首页> 外文学位 >Innovating genetic technology to map the origin of the precerebellar system.
【24h】

Innovating genetic technology to map the origin of the precerebellar system.

机译:创新遗传技术以绘制小脑前系统的起源。

获取原文
获取原文并翻译 | 示例

摘要

The precerebellar afferent system, located in the ventral brainstem, plays an essential role in coordinating motor activity by providing the principal input to the cerebellum. Precerebellar afferents are comprised of two fiber subsystems: mossy fibers synapsing on cerebellar granule cells and climbing fibers contacting cerebellar Purkinje cells. Although indirect evidence has suggested that dorsal neuroepithelium contains precursors fated to become ventral precerebellar neurons, direct evidence for the long-distance origin of all precerebellar afferent neurons has been lacking. To test the hypothesis that precerebellar afferent neurons in mice indeed originate from dorsal neuroepithelium, we have developed and applied a novel site-specific recombinase (FLP)-based approach that switches on a reporter gene in targeted progenitor cells to irreversibly mark descendant cells in the adult nervous system. Using this approach, I have directly localized the origin of precerebellar afferent mossy fiber neurons to dorsal neural progenitors that transiently express the signaling molecule Wnt1. These results demonstrate, for the first time, that this novel FLP-based system can create a permanent map of Wnt1 descendant cells in the mature nervous system. To further enhance the capabilities of this system, we have characterized a new "enhanced" version of FLP recombinase called FLPe. Our in vivo studies have shown that FLPe has ten-fold improved activity as compared to previously available versions of FLP (FLP-L) and can achieve maximum target gene excision in both somatic and germ cells, demonstrating that FLPe is highly effective in mice. By comparing fate maps generated using FLP-L versus FLPe, we found that although morphologically similar, the cells of the precerebellar primordium can be distinguished molecularly: precursor populations that give rise to mossy and climbing fiber sub-systems appear to have intrinsic differences in the regulatory machinery that controls Wnt1 expression. This result suggests that these precursor populations may be specified much earlier than previously appreciated. Indeed, the potential differences in the regulatory machinery that controls Wnt1 expression in these two precursor populations suggests that this may be an instance where early, intrinsic cues play a role in determining cell fate.
机译:位于前脑干的小脑前传入系统通过为小脑提供主要输入,在协​​调运动活动中起着至关重要的作用。小脑前传入神经由两个纤维子系统组成:在小脑颗粒细胞上突触的苔藓纤维和与小脑浦肯野细胞接触的攀登纤维。尽管间接证据表明背侧神经上皮含有注定会成为腹侧小脑前神经元的前体,但缺乏所有小脑前传入神经元长距离起源的直接证据。为了测试小鼠前小神经传入神经元确实起源于背神经上皮的假设,我们开发并应用了一种基于位点特异性重组酶(FLP)的新方法,该方法可在靶向祖细胞中打开报告基因,以不可逆转地标记小鼠后代细胞。成人神经系统。使用这种方法,我直接将小脑前传入苔藓纤维神经元的起源定位于瞬时表达信号分子Wnt1的背神经祖细胞。这些结果首次证明,这种新颖的基于FLP的系统可以在成熟神经系统中创建Wnt1后代细胞的永久图谱。为了进一步增强该系统的功能,我们对称为FLPe的FLP重组酶的新“增强”版本进行了表征。我们的体内研究表明,与以前可用的FLP(FLP-L)相比,FLPe的活性提高了十倍,并且可以在体细胞和生殖细胞中实现最大的靶基因切除,这表明FLPe在小鼠中非常有效。通过比较使用FLP-L和FLPe生成的命运图谱,我们发现,尽管在形态上相似,但小脑前原基的细胞可以在分子上进行区分:产生生苔和攀爬纤维子系统的前体种群似乎在生苔上具有内在差异。控制Wnt1表达的调控机制。该结果表明,这些前体种群的确定时间可能比以前认识的要早得多。确实,控制这两个前体群体中Wnt1表达的调控机制的潜在差异表明,这可能是早期内在线索在决定细胞命运中发挥作用的一个实例。

著录项

  • 作者

    Rodriguez, Carolyn Ines.;

  • 作者单位

    Harvard University.;

  • 授予单位 Harvard University.;
  • 学科 Neurosciences.;Genetics.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 126 p.
  • 总页数 126
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号