首页> 外文学位 >Modeling and simulation of microelectromechanical systems in multi-physics fields.
【24h】

Modeling and simulation of microelectromechanical systems in multi-physics fields.

机译:多物理场微机电系统的建模和仿真。

获取原文
获取原文并翻译 | 示例

摘要

The first objective of this dissertation is to present hybrid numerical-analytical approaches and reduced-order models to simulate microelectromechanical systems (MEMS) in multi-physics fields. These include electric actuation (AC and DC), squeeze-film damping, thermoelastic damping; and structural forces. The second objective is to investigate MEMS phenomena, such as squeeze-film damping and dynamic pull-in, and use the latter to design a novel RF-MEMS switch.;In the first part of the dissertation, we introduce a new approach to the modeling and simulation of flexible microstructures under the coupled effects of squeeze-film damping, electrostatic actuation, and mechanical forces. The new approach utilizes the compressible Reynolds equation coupled with the equation governing the plate deflection. The model accounts for the slip condition of the flow at very low pressures. Perturbation methods are used to derive an analytical expression for the pressure distribution in terms of the structural mode shapes. This expression is substituted into the plate equation, which is solved in turn using a finite-element method for the structural mode shapes, the pressure distributions, the natural frequencies, and the quality factors. We apply the new approach to a variety of rectangular and circular plates and present the final expressions for the pressure distributions and quality factors. We extend the approach to microplates actuated by large electrostatic forces. For this case, we present a low-order model, which reduces significantly the cost of simulation. The model utilizes the nonlinear Euler-Bernoulli beam equation, the von Karman plate equations, and the compressible Reynolds equation.;The second topic of the dissertation is thermoelastic damping. We present a model and analytical expressions for thermoelastic damping in microplates. We solve the heat equation for the thermal flux across the microplate, in terms of the structural mode shapes, and hence decouple the thermal equation from the plate equation. We utilize a perturbation method to derive an analytical expression for the quality factor of a microplate with general boundary conditions under electrostatic loading and residual stresses in terms of its structural mode shapes. We present results for microplates with various boundary conditions.;In the final part of the dissertation, we present a dynamic analysis and simulation of MEMS resonators and novel RF MEMS switches employing resonant microbeams. We first study microbeams excited near their fundamental natural frequencies (primary-resonance excitation). We investigate the dynamic pull-in instability and formulate safety criteria for the design of MEMS sensors and RF filters. We also utilize this phenomenon to design a low-voltage RF MEMS switch actuated with a combined DC and AC loading. Then, we simulate the dynamics of microbeams excited near half their fundamental natural frequencies (superharmonic excitation) and twice their fundamental natural frequencies (subharmonic excitation). For the superharmonic case, we present results showing the effect of varying the DC bias, the damping, and the AC excitation amplitude on the frequency-response curves. For the subharmonic case, we show that if the magnitude of the AC forcing exceeds the threshold activating the subharmonic resonance, all frequency-response curves will reach pull-in.
机译:本文的首要目的是提出一种混合数值分析方法和降阶模型,以模拟多物理场领域的微机电系统。其中包括电动(交流和直流),挤压膜阻尼,热弹性阻尼;以及和结构力。第二个目的是研究MEMS现象,例如挤压膜阻尼和动态吸合,并利用后者来设计新颖的RF-MEMS开关。在论文的第一部分,我们介绍了一种新的方法来解决这一问题。在挤压膜阻尼,静电激励和机械力的耦合作用下对柔性微结构进行建模和仿真。新方法利用了可压缩的雷诺方程和控制板挠度的方程。该模型说明了在非常低的压力下流体的滑移情况。扰动方法用于根据结构模式形状导出压力分布的解析表达式。该表达式被代入板式方程,然后使用有限元方法对结构模式形状,压力分布,固有频率和品质因数进行求解。我们将新方法应用于各种矩形和圆形板,并给出压力分布和品质因数的最终表达式。我们将方法扩展到由大静电力驱动的微孔板。对于这种情况,我们提出了一个低阶模型,该模型大大降低了仿真成本。该模型利用了非线性的Euler-Bernoulli梁方程,von Karman板方程和可压缩的Reynolds方程。论文的第二个主题是热弹性阻尼。我们提出了微板中热弹性阻尼的模型和解析表达式。我们根据结构模式形状求解了穿过微板的热通量的热方程,因此将热方程与板方程解耦。我们利用扰动方法来推导微板的质量因子的解析表达式,该微板具有在静电载荷和残余应力下的一般边界条件下的结构模式形状。我们给出了具有各种边界条件的微板的结果。在本文的最后部分,我们对MEMS谐振器和采用谐振微束的新型RF MEMS开关进行了动态分析和仿真。我们首先研究在其基本自然频率附近激发的微束(一次共振激发)。我们研究了动态引入不稳定性,并为MEMS传感器和RF滤波器的设计制定了安全标准。我们还利用这种现象来设计由直流和交流负载共同驱动的低压RF MEMS开关。然后,我们模拟微波束在其基本自然频率的一半附近(超谐波激励)和两倍于基本自然频率(亚谐波激励)被激励的动力学。对于超谐波情况,我们给出的结果显示了改变直流偏置,阻尼和交流激励幅度对频率响应曲线的影响。对于次谐波情况,我们表明,如果交流强迫的幅度超过激活次谐波共振的阈值,则所有频率响应曲线都将达到吸合状态。

著录项

  • 作者

    Younis, Mohammad I.;

  • 作者单位

    Virginia Polytechnic Institute and State University.;

  • 授予单位 Virginia Polytechnic Institute and State University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 153 p.
  • 总页数 153
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号