首页> 外文学位 >Evaluation of Escherichia coli rotary motors as actuators for microfluidic systems.
【24h】

Evaluation of Escherichia coli rotary motors as actuators for microfluidic systems.

机译:对作为微流控系统执行器的大肠杆菌旋转马达的评估。

获取原文
获取原文并翻译 | 示例

摘要

This research evaluates a novel microfluidic actuation mechanism using tethered, rotating bacteria. Naturally occurring, flagellated bacteria swim with flagellar filaments driven by rotary motors embedded in the cell membrane. These flagella are randomly distributed over the cell surface and each flagellar motor rotates (∼100Hz) independently of the others. When a single flagellum tethers down to a surface, the entire cell body counter-rotates (∼10Hz) around that flagellum. This distinctive rotary motion imparts motion on the surrounding fluid, and thus can be utilized to perform various mechanical functions in microfluidic systems such as pumping, mixing, and/or valving. Using computational fluid dynamics (CFD), this research shows that these tethered, rotating cells can be arranged inside a microchannel to form a viscous micropump. The micropump consists of several non-pathogenic Escherichia coli (E. coli) strain KAF95 with unidirectional motors arranged in a linear array inside a microchannel. The design of the micropump was optimized using CFD. During the design optimization, the effect of the stochastic rotational behavior of tethered bacteria as well as geometry of the microchannel was investigated. The pump's flowrate was maximized to 12 pL/hr for a rectangular microchannel with dimensions above 8 mum. The low volumetric flowrate that this pump delivers makes it well-suited as a localized micropump for cleaning and/or supplementary pumping purposes in micro- and nanofluidic systems.;The hybrid actuation mechanism offers substantial advantages compared to conventional MEMS-based actuators. The rotating, microscopic bacteria can live on minuscule amounts of nutrients, therefore they do not require any external power source. Also, they self-replicate, so no multi-step lithographic fabrication is required. However, bacterial flagellar motors respond to changes in the acidity level of their surroundings in a stochastic fashion. This study shows that the sensitivity to pH can be predicted through a mathematical model and can be used to control their rotational behavior as microfluidic actuators. The model incorporates nanoscale motor interactions into continuum level simulations using the Fokker-Planck Equation (FPE). The predictions of the model show a good agreement with experiments. (Abstract shortened by UMI.)
机译:这项研究评估了一种新型的使用束缚的旋转细菌的微流体驱动机制。鞭毛细菌自然发生,鞭毛细丝由嵌入细胞膜中的旋转马达驱动,游动着鞭毛细丝。这些鞭毛随机分布在细胞表面,每个鞭毛马达独立旋转(〜100Hz)。当单个鞭毛束缚到表面时,整个细胞体围绕该鞭毛反向旋转(约10Hz)。这种独特的旋转运动使周围的流体运动,因此可以用来在微流体系统中执行各种机械功能,例如泵送,混合和/或阀门控制。使用计算流体动力学(CFD),这项研究表明,这些束缚的旋转单元可以布置在微通道内以形成粘性的微型泵。微型泵由几种非致病性大肠杆菌(E. coli)菌株KAF95组成,单向马达以微阵列内部的线性阵列排列。使用CFD优化了微型泵的设计。在设计优化过程中,研究了拴系细菌随机旋转行为的影响以及微通道的几何形状。对于尺寸大于8毫米的矩形微通道,泵的流量最大可达到12 pL / hr。该泵提供的低体积流量使其非常适合用作微型和纳米流体系统中的清洁和/或补充泵送用途的局部微型泵。与传统的基于MEMS的致动器相比,混合致动机构具有很多优势。旋转的微观细菌可以以微量的营养物质生存,因此它们不需要任何外部电源。而且,它们可以自我复制,因此不需要多步光刻制造。然而,细菌鞭毛马达以随机方式对周围环境的酸度变化做出响应。这项研究表明,可以通过数学模型预测对pH的敏感性,并且可以将其用作微流体致动器来控制其旋转行为。该模型使用Fokker-Planck方程(FPE)将纳米级电机相互作用纳入连续体水平模拟中。该模型的预测表明与实验有很好的一致性。 (摘要由UMI缩短。)

著录项

  • 作者

    Al-Fandi, Mohamed Ghazi.;

  • 作者单位

    University of Arkansas.;

  • 授予单位 University of Arkansas.;
  • 学科 Biology Microbiology.;Physics Fluid and Plasma.;Engineering Mechanical.;Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 155 p.
  • 总页数 155
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号