首页> 外文学位 >Genetic fidelity and genome stability in the hyperthermophilic archaeon Sulfolobus acidocaldarius.
【24h】

Genetic fidelity and genome stability in the hyperthermophilic archaeon Sulfolobus acidocaldarius.

机译:嗜热古细菌Sulfolobus acidocaldarius中的遗传保真度和基因组稳定性。

获取原文
获取原文并翻译 | 示例

摘要

Hyperthermophilic archaea grow optimally at temperatures that accelerate DNA damage which raises important questions about how these organisms maintain genetic fidelity and genome stability. Archaea in general have reshaped our understanding of the different adaptations of cellular life and their uniqueness justifies their classification into a separate domain of life. The aim of the thesis research presented in this document was to investigate genetic fidelity and genome stability in hyperthermophilic archaea. The approach involved developing genetic assays based on conventional bacterial and eukaryal model systems as well as novel approaches to probe fundamental mechanisms of genome stability at the molecular level. An important component of genetic fidelity, DNA mismatch repair, was investigated in Sulfolobus acidocaldarius. Sulfolobus acidocaldarius was found to repair mismatches formed during homologous recombination (HR), which provides the first in vivo evidence for mismatch repair in hyperthermophilic archaea. However, the events seen in S. acidocaldarius were highly localized, involving individual or short patches of mismatches seen within long tracts of mismatched DNAs, and thus differed from that resulting from conventional mismatch repair. This process contributed to the unique properties of HR in S. acidocaldarius compared to known bacterial and eukaryotic counterparts. Evidence for genome stability and genetic fidelity in S. acidocaldarius was obtained by sequencing and comparing whole genomes of three natural isolates from local populations separated by large distances (∼8200 km). Only 40 polymorphisms were found across all three strains, which suggest a combination of efficient global dispersal and (novel) genetic mechanisms that limit replication errors and chromosomal rearrangements. DNA exchange via conjugation between S. acidocaldarius cells can contribute to this process. Preliminary studies of the size(s) of DNA fragment(s) transferred and direction of transfer show transfer capability of at least 122kb and provide insights into the processing of DNA by the recipient cell following transfer.
机译:嗜热古细菌在加速DNA损伤的温度下生长最佳,这引发了有关这些生物如何保持遗传保真度和基因组稳定性的重要问题。总的来说,古细菌已经重塑了我们对细胞生命的不同适应的理解,它们的独特性证明了将其归类为生命的一个独立领域的合理性。本文提出的论文研究的目的是研究嗜热古细菌的遗传保真度和基因组稳定性。该方法涉及开发基于常规细菌和真核模型系统的遗传检测方法,以及在分子水平上探索基因组稳定性基本机制的新方法。在Sulfolobus acidocaldarius中研究了遗传保真度的重要组成部分,即DNA错配修复。发现Sulfolobus acidocaldarius可以修复同源重组(HR)过程中形成的错配,这为嗜热古细菌中的错配修复提供了第一个体内证据。然而,在嗜酸链球菌中发现的事件高度定位,涉及在错配的DNA的长段中看到的单个或短的错配斑块,因此与常规错配修复导致的事件不同。与已知的细菌和真核生物对应物相比,此过程有助于酸度链球菌中HR的独特特性。通过对三个自然分离株的全天然基因组进行测序和比较,获得了嗜酸链球菌的基因组稳定性和遗传保真性的证据,这些分离株来自相距较远(约8200 km)的本地种群。在所有三个菌株中仅发现40种多态性,这表明有效的全局分散和(新颖)遗传机制相结合,可限制复制错误和染色体重排。通过嗜酸链球菌细胞之间的缀合进行的DNA交换可以促进这一过程。对转移的DNA片段大小和转移方向的初步研究表明转移能力至少为122kb,并为转移后受体细胞对DNA的处理提供了见识。

著录项

  • 作者

    Mao, Dominic.;

  • 作者单位

    University of Cincinnati.;

  • 授予单位 University of Cincinnati.;
  • 学科 Biology Molecular.;Biology Microbiology.;Biology Genetics.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 98 p.
  • 总页数 98
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号