首页> 外文学位 >Buckling and Topological Defects in Graphene and Carbon Nanotubes.
【24h】

Buckling and Topological Defects in Graphene and Carbon Nanotubes.

机译:石墨烯和碳纳米管中的屈曲和拓扑缺陷。

获取原文
获取原文并翻译 | 示例

摘要

Graphene is the strongest material ever discovered and has an extremely high Young's modulus (∼ 1 GPa). Although stretching the sp2 covalent bonds between carbon atoms is very difficult, significant deflections do develop in graphene membranes. In fact, thermal rippling naturally emerges in graphene at any finite temperature. Moreover, the topological defects mediating plastic deformation often cause out-of-plane crumpling, an effective way to reduce the total elastic energy of the topological defect. It is even possible to design specific stress states to produce periodic wrinkles in graphene with adjustable wave lengths.;This work aims to understand how buckling influences the elastic and plastic behavior of graphene-based nanostructures. While the elastic moduli may be straightforwardly computed using structure optimization techniques with applied test stresses, it is a nontrivial task to obtain elastic properties at any specific temperature. Further, linear elastic theories are not able to describe large buckling because the second order nonlinear terms in the definition of the Lagrangian finite strain tensor cannot be neglected. In addition, the existence of topological defects and constraints need to be properly treated. Finally, buckling and defects of a curved surface such as a nanotube is even more complicated and poses other intriguing challenges.;To proceed, we employ Monte Carlo techniques to obtain fundamental elastic properties of graphene at desired temperatures, which supplies useful inputs for a nonlinear continuum model for graphene. This model not only takes into account, in a suitable manner, both large out-of-plane buckling and interactions among edge dislocations with periodic boundary conditions, but also serves as a handy tool for simulating nanoindentation experiments and the controlled wrinkling of graphene. At last, we focus on the Stone–Wales defect mediated plasticity of CNTs. Specifically, a kinetic Monte Carlo framework is designed to model the defect dynamics over a long time scale. We find that in large nanotubes, a chain of closely packed dislocations (called a "dislocation worm") may have less buckling and lower formation energy than the conventional dislocation glide under high tensile stresses.
机译:石墨烯是迄今为止发现的最坚固的材料,并且具有极高的杨氏模量(约1 GPa)。尽管拉伸碳原子之间的sp2共价键非常困难,但石墨烯膜的确会出现明显的挠曲。实际上,在任何有限温度下,石墨烯中都会自然产生热波纹。而且,介导塑性变形的拓扑缺陷经常引起面外皱缩,这是减小拓扑缺陷的总弹性能的有效方法。甚至有可能设计特定的应力状态,以在波长可调的石墨烯中产生周期性的皱纹。这项工作旨在了解屈曲如何影响石墨烯基纳米结构的弹性和塑性行为。虽然可以使用具有施加的测试应力的结构优化技术来直接计算弹性模量,但要在任何特定温度下获得弹性性能都是一项艰巨的任务。此外,线性弹性理论不能描述大的屈曲,因为不能忽略拉格朗日有限应变张量定义中的二阶非线性项。另外,拓扑缺陷和约束的存在需要适当处理。最后,诸如纳米管之类的弯曲表面的屈曲和缺陷更加复杂,并提出了其他有趣的挑战。继续,我们使用蒙特卡洛技术来获得所需温度下石墨烯的基本弹性,这为非线性提供了有用的输入。石墨烯的连续模型。该模型不仅以适当的方式考虑了大的平面外屈曲以及具有周期性边界条件的边缘位错之间的相互作用,而且还用作模拟纳米压痕实验和石墨烯可控皱纹的便捷工具。最后,我们将重点放在Stone-Wales缺陷介导的CNT的可塑性上。具体而言,设计了动力学蒙特卡洛框架,以模拟长时间范围内的缺陷动态。我们发现,在大型纳米管中,紧密排列的位错链(称为“位错蠕虫”)在高拉应力下比传统的位错滑行可能具有更少的屈曲和更低的形成能。

著录项

  • 作者

    Chen, Shuo.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 69 p.
  • 总页数 69
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号