首页> 外文学位 >Mechanisms of dealing with osmotic stress in archaea.
【24h】

Mechanisms of dealing with osmotic stress in archaea.

机译:处理古细菌的渗透压的机制。

获取原文
获取原文并翻译 | 示例

摘要

The mechanisms which archaea employ to deal with osmotic stress were evaluated. Three systems were investigated to explore this concept; the dynamics and uptake of osmolytes by Halobacterium NRC-1, the thermostability of Methanococcus jannaschii glutamine synthetase (GS), and the mechanism of inositol-1-phosphate synthase (IPS) from Archaeoglobus fulgidus.;It has been suggested that Halobacterium NRC-1, an aerobic halophile of the order Halobacteriales, utilizes the "salt-in strategy" exclusively to balance the high osmotic strength of its environment. Growth of Halobacterium NRC-1 under various salt concentrations and subsequent analysis of the internal organic small molecules and potassium concentrations has suggested that citrate, alpha-glutamate, and succinate are present in significant concentrations.;The effect of solutes on the thermostability of the metabolic enzyme glutamine synthase (GS) from Methanococcus jannaschii was measured and compared to solute effects on a bacterial mesophilic counterpart. None of the solutes tested (including the K+-glutamate isomers accumulated by M. jannaschii) significantly stabilized the protein so that it could be heated above Tm for long periods of time. For the archaeal GS, protein-protein interactions appeared to be the dominant factor in stabilizing the enzyme to prolonged incubation above T m.;Archaeoglobus fulgidus and other hyperthermophilic archaea accumulate di-myo-1,1'-inositol phosphate (DIP) when grow at supraoptimal temperature. Inositol-1-phoshate synthase (IPS) is responsible for committing cellular resources to the production of DIP. The crystal structure of this enzyme has recently been solved [Bog Stec, unpublished]. Potential critical residues in the catalytic mechanism were identified and mutants made where each residue was changed to an alanine (L257A, K274A, K306A, and D332A). All mutants rendered the enzyme inactive. To effectively study the mechanism, assays were developed to detect binding of G-6-P (the substrate) and binding of NAD+ (the cofactor). Furthermore, various one and two dimensional NMR techniques were used in attempts to identify and confirm the presence of the 5-keto-(D)-glucose-6-phosphate intermediate. Preliminary results suggest that the intermediate formed is the keto compound.
机译:评估了古细菌用于处理渗透压的机制。研究了三个系统来探索这个概念。盐细菌NRC-1的渗透物动力学和吸收,詹氏甲烷球菌谷氨酰胺合成酶(GS)的热稳定性以及古生球藻中肌醇-1-磷酸合酶(IPS)的机制。 ,是Halobacteriales的好氧嗜盐菌,仅利用“盐入策略”来平衡其环境的高渗透力。 NRC-1盐杆菌在各种盐浓度下的生长以及随后对内部有机小分子和钾浓度的分析表明,柠檬酸盐,α-谷氨酸盐和琥珀酸盐的浓度很高。;溶质对代谢物热稳定性的影响测量了来自詹氏甲烷球菌的酶谷氨酰胺合酶(GS),并将其与溶菌作用对细菌的嗜温菌进行了比较。测试的任何溶质(包括詹氏甲烷球菌积累的K +-谷氨酸异构体)均无法显着稳定蛋白质,因此可以长时间加热至Tm以上。对于古细菌GS,蛋白质-蛋白质相互作用似乎是稳定酶使其在T m以上延长潜伏期的主要因素;古球藻和其他嗜热古细菌在生长时会积累di-myo-1,1'-肌醇磷酸酯(DIP)。在最佳温度下。肌醇-1-磷酸合成酶(IPS)负责将细胞资源投入DIP的生产。最近已经解决了该酶的晶体结构[Bog Stec,未出版]。确定了催化机理中潜在的关键残基,并制备了突变体,其中每个残基均变为丙氨酸(L257A,K274A,K306A和D332A)。所有突变体均使该酶失活。为了有效地研究该机制,开发了检测G-6-P(底物)和NAD +(辅因子)结合的检测方法。此外,尝试使用各种一维和二维NMR技术来鉴定和确认5-酮-(D)-葡萄糖-6-磷酸酯中间体的存在。初步结果表明,形成的中间体是酮化合物。

著录项

  • 作者

    Neelon, Kelly.;

  • 作者单位

    Boston College.;

  • 授予单位 Boston College.;
  • 学科 Biology Microbiology.;Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 226 p.
  • 总页数 226
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 微生物学;生物化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号