首页> 外文学位 >Frequency domain laser ultrasonics: Optical transduction of acoustic waves and nanomechanical devices.
【24h】

Frequency domain laser ultrasonics: Optical transduction of acoustic waves and nanomechanical devices.

机译:频域激光超声:声波和纳米机械设备的光学转换。

获取原文
获取原文并翻译 | 示例

摘要

The concept of optical excitation and detection of nanoscale mechanical motion has led to a variety of tools for non-destructive materials characterization and remote sensing. These techniques, commonly referred to as laser ultrasonics, offer the benefit of high-bandwidth, highly localized measurements, and also allow for the ability to investigate nanoscale devices. The impact of laser ultrasonic systems has been felt in industries ranging from semiconductor metrology to biological and chemical sensing. In this thesis, we develop a variety of techniques utilizing a frequency domain laser ultrasonic approach, where amplitude modulated continuous wave laser light is used instead of traditional pulsed laser sources, and we apply these systems in free-space, optical fiber based. and integrated on-chip configurations. In doing so, we demonstrate the ability to efficiently transduce various types of mechanical motion including surface and bulk acoustic waves, guided acoustic waves, and resonant motion from nanomechanical systems (NEMS). First, we develop a superheterodyne free-space ultrasonic inspection system in an effort to characterize surface acoustic wave dispersion in thin-film material systems. We utilize a similar system to study negative refraction and focusing behavior of guided elastic waves in a thin metal plate, providing a novel approach for the study of negative index physics. Furthermore, we develop a near-field optical technique using optical fibers to simultaneously transduce the motion of 70 NEMS resonators using a single channel. This multiplexed approach serves as a crucial step in moving NEMS technology out of the research laboratory. Finally, we go on to study opto-mechanical interactions between optical whispering gallery mode (WGM) resonators and integrated NEMS devices on the same chip, using the enhanced interactions to study optical forces acting on the nanoscale mechanical devices. This integrated system provides a very efficient mechanical sensing platform as well as a robust test-bed for the study of new optical interactions including the presence of both attractive and repulsive optical forces. The overall goal of the work is to further the state-of-the art for optically transduced nanomechanical sensing as well as to advance the understanding of optomechanical interactions of nanoscale devices.
机译:光激发和纳米级机械运动检测的概念已导致用于无损材料表征和遥感的各种工具。这些技术通常称为激光超声,提供了高带宽,高度局部化的测量的优势,并且还具有研究纳米级设备的能力。激光超声系统的影响已在从半导体计量到生物和化学传感的行业中感受到。在本文中,我们开发了多种利用频域激光超声方法的技术,其中使用调幅连续波激光代替传统的脉冲激光源,并将这些系统应用于基于自由空间的光纤。和集成的片上配置。通过这样做,我们证明了有效转换各种类型的机械运动的能力,包括表面声波和体声波,引导声波以及纳米机械系统(NEMS)的共振运动。首先,我们开发了一种超外差自由空间超声检查系统,以表征薄膜材料系统中的表面声波色散。我们利用类似的系统来研究薄金属板中的弹性波的负折射和聚焦行为,为研究负折射率物理提供了一种新颖的方法。此外,我们开发了一种使用光纤的近场光学技术,以同时通过单个通道转换70个NEMS谐振器的运动。这种多重方法是将NEMS技术移出研究实验室的关键步骤。最后,我们继续研究光学耳语画廊模式(WGM)谐振器与同一芯片上集成的NEMS器件之间的光机械相互作用,并使用增强的相互作用来研究作用在纳米级机械器件上的光学力。这个集成的系统提供了一个非常有效的机械感测平台以及一个强大的测试台,用于研究新的光学相互作用,包括吸引和排斥的光学力。这项工作的总体目标是促进光学传感纳米机械传感的最新技术,并增进对纳米级设备光机械相互作用的了解。

著录项

  • 作者

    Bramhavar, Suraj.;

  • 作者单位

    Boston University.;

  • 授予单位 Boston University.;
  • 学科 Engineering Electronics and Electrical.;Physics Acoustics.;Physics Optics.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 137 p.
  • 总页数 137
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号