首页> 外文学位 >Molecular genetics of nodule number regulation: Cloning, characterization and functional studies of the root determined nodulator1 (RDN1) gene in Medicago truncatula.
【24h】

Molecular genetics of nodule number regulation: Cloning, characterization and functional studies of the root determined nodulator1 (RDN1) gene in Medicago truncatula.

机译:根瘤数调控的分子遗传学:Medi藜苜蓿根确定性​​根瘤菌(RDN1)基因的克隆,鉴定和功能研究。

获取原文
获取原文并翻译 | 示例

摘要

Nitrogen is critical to life. However, the majority of nitrogen on earth (in the atmosphere) is inert and unavailable to nearly all organisms. Metabolically diverse prokaryotes are the only organisms capable of fixing atmospheric nitrogen; rhizobia set up a symbiosis with legume plants allowing the plants to benefit from this ability. Since nodulation and the subsequent nitrogen fixation processes are energy intensive, the host plant must balance hosting of the rhizobia by limiting the number of nodules it forms through a mechanism called Autoregulation of Nodulation (AON). My study of mutants in the model legume Medicago truncatula defective in AON allowed identification of loss-of-function alleles of the ROOT DETERMINED NODULATION1 (RDN1) gene (Medtr5g08952). I identified RDN1 by genetic mapping, transcript profiling, and rescue of the mutant phenotype. RDN1 is predicted to encode a 357-amino acid protein and is a member of an uncharacterized, highly conserved gene family unique to green plants. The promoter drives expression in the vascular cylinder and subcellular localization places RDN1 in the secretory pathway, consistent with a role for RDN1 in intracellular and long distance signaling in plants. I used grafted plants to show that RDN1 regulatory function occurs in the root before the shoot-derived suppression signal regulated by SUNN, another AON gene. Using a combination of gene expression assays, analysis of sunn/RDN1 double mutants and shoot-to-root reciprocal grafting I showed SUNN and RDN1 act in the same signaling pathway. RDN genes from poplar, rice and Arabidopsis can rescue the MtRDN1 mutant suggesting RDN1 protein function is retained in non-legumes. I report multiple root defects in Arabidopsis and Medicago mutants with defects in RDN genes. Together these findings help establish RDN as a family of proteins with previously uncharacterized regulatory functions involved not only AON but also root growth and lateral root development in land plants. Building on RDN's AON role, I also developed a split root inoculation system to understand the timing of autoregulation of nodulation in M. truncatula and discovered evidence for a previously unknown secondary AON signal.
机译:氮对生命至关重要。但是,地球上(大气中)的大部分氮是惰性的,几乎所有生物都无法利用。代谢多样化的原核生物是唯一能够固定大气氮的生物。根瘤菌与豆科植物共生,使植物从这种能力中受益。由于结瘤和随后的固氮过程需要大量能源,因此寄主植物必须通过称为结瘤的自动调节(AON)的机制限制发根瘤的数量,从而平衡根瘤菌的寄主。我对AON有缺陷的豆科植物紫花苜蓿模型突变体的研究允许鉴定根确定结节基因1(RDN1)(Medtr5g08952)的功能丧失的等位基因。我通过基因定位,转录谱分析和突变表型的挽救鉴定了RDN1。 RDN1预计将编码357个氨基酸的蛋白质,并且是绿色植物特有的未表征,高度保守的基因家族的成员。启动子驱动血管圆柱中的表达,亚细胞定位将RDN1置于分泌途径中,与RDN1在植物细胞内和长距离信号传导中的作用一致。我用嫁接的植物显示,RDN1调节功能发生在根中,而芽的抑制信号受另一个AON基因SUNN调节。使用基因表达分析的组合,对sunn / RDN1双重突变体和枝根互惠嫁接的分析I显示SUNN和RDN1在同一信号通路中起作用。杨树,水稻和拟南芥的RDN基因可以挽救MtRDN1突变体,表明RDN1蛋白功能保留在非豆类中。我报告了拟南芥和苜蓿突变体中有RDN基因缺陷的多个根缺陷。这些发现共同帮助将RDN确立为蛋白质家族,具有以前未知的调节功能,不仅涉及AON,还涉及陆地植物的根系生长和侧向根系发育。在RDN的AON角色的基础上,我还开发了一个分裂根接种系统,以了解截短分枝杆菌中结节自动调节的时间,并发现先前未知的次级AON信号的证据。

著录项

  • 作者

    Kassaw, Tessema Kebede.;

  • 作者单位

    Clemson University.;

  • 授予单位 Clemson University.;
  • 学科 Biology Molecular.;Biology Genetics.;Biology Botany.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 279 p.
  • 总页数 279
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号