首页> 外文学位 >Engineering viscoelastic properties of novel protein hydrogels.
【24h】

Engineering viscoelastic properties of novel protein hydrogels.

机译:新型蛋白质水凝胶的工程粘弹性。

获取原文
获取原文并翻译 | 示例

摘要

Hydrogels are of interest to the biomedical field because the hydrated networks can provide a physiological environment where biological species can survive or grow. Genetic engineering of protein polymers—a synthetic technique which provides a superior level of synthetic control without compromising natural composition—was used to prepare materials of the general architecture, rod-coil-rod. A naturally occurring motif, the leucine zipper, describes the rod domain. The leucine zipper can self-assemble when two amphipathic helices come together and are stabilized by contact along their hydrophobic face. The acidic leucine zipper domain, denoted ‘A,’ contains mostly glutamic acid in residues which flank the hydrophobic interface. A polyelectrolyte protein, of the repetitive sequence [(AG)3PEG], defines the coil domain, denoted ‘C.’ AC10Acys displayed reversible gelation as a function of pH and temperature, thus three aspects of the viscoelastic behavior were investigated.; The gelation properties were studied by single particle tracking, which monitors the Brownian motion of fluorescent particles imbedded in a protein hydrogel or suspended in a protein solution.; First, the physical crosslinks in an AC10Acys hydrogel network were diplaced by the addition of a leucine zipper domain, Atrp. A 2.23 mM AC10Acys hydrogel behaved as an elastic gel at pH 8.5, but upon addition of 1.13 mM Atrp, a viscous solution was obtained.; Second, the effect of charge of the leucine zipper domains were examined using, AC10Acys, and BC10Bcys, where ‘B’ denotes a basic leucine zipper domain. Both protiens form viscous solutions at 1.78 mM, pH 8.5 or pH 7.4, however, upon combination of AC10Acys and BC10Bcys, a stiff elastic gel is formed.; Finally, a series of triblock proteins with increasing midblock length were genetically engineered to study the influence of midblock length on the gelation behavior of triblock proteins. The pH and concentration dependences of gelation of ACxAcys, where x = (20, 30, 40, 50), were examined by single particle tracking. Whereas AC10Acys was found to gel around 2.23 MM, pH 8.0, the concentration required for gelation decreases to 1.27 mM for the protein with the longest midblock length, AC50Acys.
机译:水凝胶是生物医学领域感兴趣的,因为水合网络可以提供生物物种可以生存或生长的生理环境。蛋白质聚合物的基因工程是一种合成技术,可在不损害天然成分的情况下提供较高水平的合成控制,可用于制备一般结构的材料(棒-卷-棒)。天然存在的亮氨酸拉链描述了杆域。当两个两亲性螺旋聚在一起并通过沿其疏水性面的接触而稳定时,亮氨酸拉链可以自组装。酸性亮氨酸拉链结构域(称为“ A”)在疏水界面两侧的残基中主要含有谷氨酸。重复序列[(AG) 3 PEG]的聚电解质蛋白定义了线圈结构域,称为“ C”。AC 10 Acys显示出可逆的凝胶化作用,是pH和温度,因此研究了粘弹性行为的三个方面。通过单颗粒跟踪研究凝胶化特性,该跟踪监测嵌入在蛋白质水凝胶中或悬浮在蛋白质溶液中的荧光颗粒的布朗运动。首先,通过添加亮氨酸拉链结构域Atrp取代了AC 10 Acys水凝胶网络中的物理交联。一种2.23mM AC 10 Acys水凝胶在pH 8.5下表现为弹性凝胶,但加入1.13mM Atrp后,获得了粘性溶液。其次,使用AC 10 Acys和BC 10 Bcys检查亮氨酸拉链结构域的电荷效应,其中“ B”表示基本的亮氨酸拉链结构域。两种蛋白质都形成1.78 mM,pH 8.5或pH 7.4的粘稠溶液,但是,当AC 10 Acys和BC 10Bcys结合时,会形成坚硬的弹性凝胶。最后,对一系列具有中段长度增加的三嵌段蛋白进行了基因工程研究,以研究中段长度对三嵌段蛋白胶凝行为的影响。通过单颗粒跟踪研究了x =(20,30,40,50)时AC x Acys凝胶化的pH和浓度依赖性。尽管发现AC 10 Acys在2.23 MM(pH 8.0)左右凝胶化,但是对于中段长度最长的蛋白AC 50 Acys,凝胶化所需的浓度降低到1.27 mM。 。

著录项

  • 作者

    Sakata, Jill K.;

  • 作者单位

    University of Massachusetts Amherst.;

  • 授予单位 University of Massachusetts Amherst.;
  • 学科 Chemistry Polymer.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 p.243
  • 总页数 186
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 高分子化学(高聚物);
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号