首页> 外文学位 >Interface circuits in SOI-CMOS for high-temperature wireless micro-sensors.
【24h】

Interface circuits in SOI-CMOS for high-temperature wireless micro-sensors.

机译:SOI-CMOS中的接口电路,用于高温无线微传感器。

获取原文
获取原文并翻译 | 示例

摘要

This thesis explores the use of commercially available SOI-CMOS technology for use in high-temperature sensor interface circuits for operation at temperatures up to 300°C. A fully depleted technology was chosen for its inherently low leakage current and critical sensor interface circuits were developed, specifically, a transimpedance amplifier and analog-to-digital converter. Since the ultimate goal is a high-temperature wireless microsensor, low power consumption and stable oscillator frequency were key issues in this work.; Oscillator topologies for MEMS resonators having very high series resistance were examined in regards power consumption and in-circuit quality factor. The transresistance topology was determined to be the best candidate for operation with MEMS resonators, but bandwidth and transimpedance gain must be very high to achieve a loop gain greater than one, as required for oscillation. An SOI transresistance was designed to meet the requirements of a particular SiC resonator. This IC was fabricated, packaged in a DIP, and tested. The amplifier, itself, oscillated due to parasitic coupling capacitance between input and output in the packaging, as proved by a variety of measurements and simulations. In future work, an unpackaged SOI-IC will be used to eliminate the parasitic coupling. Ideally, the MEMS resonator should be integrated with the IC.; To convert the analog signal to digital with 8-bit of accuracy reliably, a robust, 1st-order sigma-delta converter was designed. The sigma-delta converter is fully differential with discrete-time integrator and comparator, and also uses chopper stabilization, dynamic element matching and dithering to achieve high performance with relatively poor components. State-of-the-art performance has been achieved. With a power supply voltage of 3.3 V, SNR reached the theoretical maximum of 50 dB at room temperature, and was above 40 dB and 30 dB, respectively, up to 250°C and 275°C. Design weaknesses were identified in the course of testing, so it is believed that this performance can be improved.
机译:本文探讨了将商业上可用的SOI-CMOS技术用于高温传感器接口电路,以在高达300°C的温度下工作的方法。由于其固有的低泄漏电流而选择了一种完全耗尽的技术,因此开发了关键的传感器接口电路,特别是跨阻放大器和模数转换器。由于最终目标是高温无线微传感器,因此低功耗和稳定的振荡器频率是这项工作的关键问题。针对功耗和电路内品质因数,对具有很高串联电阻的MEMS谐振器的振荡器拓扑进行了研究。已确定跨阻拓扑结构是与MEMS谐振器配合使用的最佳选择,但是带宽和跨阻增益必须非常高才能实现振荡所需的大于1的环路增益。设计了SOI跨阻以满足特定SiC谐振器的要求。该IC被制造,封装在DIP中并进行了测试。放大器本身由于封装中输入和输出之间的寄生耦合电容而振荡,这已通过各种测量和仿真证明。在未来的工作中,将使用未包装的SOI-IC消除寄生耦合。理想情况下,MEMS谐振器应与IC集成在一起。为了可靠地将模拟信号转换为具有8位精度的数字信号,设计了一个健壮的1 st 阶sigma-delta转换器。 sigma-delta转换器具有离散时间积分器和比较器全差分功能,还使用斩波器稳定,动态元件匹配和抖动功能,以相对较差的组件实现高性能。达到了最先进的性能。在3.3 V的电源电压下,SNR在室温下达到理论最大值50 dB,在250°C和275°C时分别达到40 dB和30 dB以上。在测试过程中发现了设计上的弱点,因此可以相信可以改善这种性能。

著录项

  • 作者

    Toygur, Lemi.;

  • 作者单位

    Case Western Reserve University.;

  • 授予单位 Case Western Reserve University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 p.6255
  • 总页数 150
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号