首页> 外文学位 >Optically-Connected Memory: Architectures and Experimental Characterizations.
【24h】

Optically-Connected Memory: Architectures and Experimental Characterizations.

机译:光学连接的存储器:体系结构和实验特性。

获取原文
获取原文并翻译 | 示例

摘要

Growing demands on future data centers and high-performance computing systems are driving the development of processor-memory interconnects with greater performance and flexibility than can be provided by existing electronic interconnects. A redesign of the systems' memory devices and architectures will be essential to enabling high-bandwidth, low-latency, resilient, energy-efficient memory systems that can meet the challenges of exascale systems and beyond.;By leveraging an optics-based approach, this thesis presents the design and implementation of an optically-connected memory system that exploits both the bandwidth density and distance-independent energy dissipation of photonic transceivers, in combination with the flexibility and scalability offered by optical networks. By replacing the electronic memory bus with an optical interconnection network, novel memory architectures can be created that are otherwise infeasible. With remote optically-connected memory nodes accessible to processors as if they are local, programming models can be designed to utilize and efficiently share greater amounts of data. Processors that would otherwise be idle, being starved for data while waiting for scarce memory resources, can instead operate at high utilizations, leading to drastic improvements in the overall system performance.;This work presents a prototype optically-connected memory module and a custom processor-based optical-network-aware memory controller that communicate transparently and all-optically across an optical interconnection network. The memory modules and controller are optimized to facilitate memory accesses across the optical network using a packet-switched, circuit-switched, or hybrid packet-and-circuit-switched approach. The novel memory controller is experimentally demonstrated to be compatible with existing processor-memory access protocols, with the memory controller acting as the optics-computing interface to render the optical network transparent. Additionally, the flexibility of the optical network enables additional performance benefits including increased memory bandwidth through optical multicasting. This optically-connected architecture can further enable more resilient memory system realizations by expanding on current error detection and correction memory protocols.;The integration of optics with memory technology constitutes a critical step for both optics and computing. The scalability challenges facing main memory systems today, especially concerning bandwidth and power consumption, complement well with the strengths of optical communications-based systems. Additionally, ongoing efforts focused on developing low-cost optical components and subsystems that are suitable for computing environments may benefit from the high-volume memory market. This work therefore takes the first step in merging the areas of optics and memory, developing the necessary architectures and protocols to interface the two technologies, and demonstrating potential benefits while identifying areas for future work. Future computing systems will undoubtedly benefit from this work through the deployment of high-performance, flexible, energy-efficient optically-connected memory architectures.
机译:对未来数据中心和高性能计算系统的需求不断增长,推动了处理器-内存互连的发展,其性能和灵活性比现有电子互连所提供的性能和灵活性更高。重新设计系统的存储设备和体系结构对于实现高带宽,低延迟,弹性,高能效的存储系统至关重要,这些系统可以应对百亿亿次系统及更多的挑战。通过利用基于光学的方法,本文提出了一种光连接存储系统的设计和实现,该系统利用了光子收发器的带宽密度和与距离无关的能量消耗,并结合了光网络提供的灵活性和可扩展性。通过用光学互连网络代替电子存储器总线,可以创建新颖的存储器体系结构,而这些体系结构是不可行的。通过处理器可以访问的远程光学连接的存储节点,就好像它们是本地的一样,可以将编程模型设计为利用并有效共享大量数据。否则本来空闲的处理器,在等待稀缺的内存资源的同时会出现数据短缺的情况,而是可以以高利用率运行,从而导致整体系统性能的大幅度提高。这项工作提出了光连接内存模块原型和定制处理器的原型。的基于光网络的存储控制器,可跨光互连网络进行透明和全光通信。存储器模块和控制器经过优化,以利于使用分​​组交换,电路交换或混合的分组和电路交换方法在整个光网络中进行存储器访问。实验证明新型存储控制器与现有的处理器内存访问协议兼容,其中存储控制器充当光学计算接口以使光学网络透明。此外,光网络的灵活性还带来了其他性能优势,包括通过光组播增加存储带宽。这种光学连接的体系结构可以通过扩展当前的错误检测和校正存储协议来进一步实现更具弹性的存储系统实现。光学与存储技术的集成构成了光学和计算领域的关键一步。当今主要存储系统面临的可伸缩性挑战,尤其是在带宽和功耗方面,与基于光通信的系统的优势相得益彰。此外,致力于开发适用于计算环境的低成本光学组件和子系统的持续努力可能会受益于大容量存储器市场。因此,这项工作迈出了融合光学和内存领域,开发必要的架构和协议以连接这两种技术的第一步,并在确定未来工作领域的同时展示了潜在的好处。毫无疑问,未来的计算系统将通过部署高性能,灵活,节能的光连接内存体系结构而受益。

著录项

  • 作者

    Brunina, Daniel.;

  • 作者单位

    Columbia University.;

  • 授予单位 Columbia University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 152 p.
  • 总页数 152
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号