首页> 外文学位 >Ligand-enhanced polymeric nanoparticles for targeted RNA-based gene therapy.
【24h】

Ligand-enhanced polymeric nanoparticles for targeted RNA-based gene therapy.

机译:配体增强的聚合物纳米粒子,用于基于RNA的靶向基因治疗。

获取原文
获取原文并翻译 | 示例

摘要

Nucleic acids and their analogs have the capacity to augment and regulate gene expression in order to beget unparalleled levels of therapeutic specificity and potency for the treatment of chronic diseases such as cancer. The success of gene therapy is intimately aligned with the efficacy of associated delivery systems. In this dissertation, I develop a poly(lactic-co-glycolic acid) (PLGA) nanoparticle delivery system that can induce various forms of RNA-based gene regulation, including siRNA-mediated knockdown of gene expression, relief of microRNA-induced downregulation of tumor suppressor genes, and controlled alternative splicing of cancer oncogenes. PLGA nanoparticles (loaded with 142.7 +/- 23.8 pmol siRNA/mg nanoparticle) that were coated with molecules that impart the delivery enhancements of cell-specific targeting (i.e. folate) and improved cellular uptake (i.e. the cell-penetrating peptide, penetratin) were effective at achieving siRNA-induced gene knockdown in cultured cells and in a subcutaneous tumor model (60% relative to control tumors). To the best of my knowledge, this work presents the first nanoscale delivery systems to employ a combination of these exact ligands for gene therapy---importantly, the ligands were attached using a PEGylated phospholipid (DSPE-PEG) tethering strategy that allowed for a high density (∼200-2000 molecules per nanoparticle) of functional ligand display. My results suggest that when attached in tandem both folate and penetratin improved the delivery capabilities of nanoparticles via two modes: by facilitating cellular uptake and by enhancing the avidity between nanoparticles and target cells. This multifunctional nanoparticle platform was also utilized to deliver antisense nucleic acids that block microRNA activity and alter splicing. Toward this end, I found that chemically-enhanced charge-neutral nucleic acid analogs (specifically, morpholinos and peptide nucleic acids) could be encapsulated into PLGA nanoparticles (∼500 molecules per nanoparticle) without the experimental electrostatic manipulations that typically confound nucleic acid delivery. The anti-cancer efficacy of this nanoparticulate system was evaluated in cell culture and mouse tumor models. Both forms of nanoparticle-mediated gene therapy reduced cell viability---in part, through augmentation of apoptosis. In the treatment of epithelial cancer cells, altering the splicing pattern of Mcl-1 to produce its pro-apoptotic isoform had in an IC50 of ∼ 360nM, and blocking the activity of the microRNA, miR-155, had an IC50 of ∼80nM. Inhibition of miR-155 was further investigated in vivo. Certain microRNAs have been shown to have oncogenic functions, e.g. mir-155; further, some cancers are dependent on the expression of these microRNA oncogenes. I investigated the ability of nanoparticles that deliver microRNA-blocking peptide nucleic acids to inhibit miR-155 in a lymphoma tumor model of miR-155-addiction. Attenuation of this critical microRNA target produced anti-tumor effects (after ∼1 week, tumors showed a 5-fold decrease in growth after local delivery and a 2-fold decrease after systemic administration) that correlated with suppression of miR-155 levels, which confirmed that this nanoparticle delivery system is a promising therapeutic platform. This work is germane to the fields of drug delivery and cancer gene therapy, as it presents a nanoscale technology that has been tailored to effectively and safely achieve controlled expression of cancer-associated genes by evoking multiple methods of gene regulation.
机译:核酸及其类似物具有增强和调节基因表达的能力,从而获得无与伦比的水平的治疗特异性和治疗慢性疾病如癌症的潜能。基因治疗的成功与相关传递系统的功效密切相关。在本文中,我开发了一种聚乳酸-乙醇酸共聚物(PLGA)纳米颗粒递送系统,该系统可以诱导各种形式的基于RNA的基因调控,包括siRNA介导的基因表达抑制,缓解microRNA诱导的RNA的下调。抑癌基因,以及癌癌基因的受控可变剪接。 PLGA纳米颗粒(载有142.7 +/- 23.8 pmol siRNA / mg纳米颗粒)涂有可增强细胞特异性靶向(即叶酸)递送并改善细胞吸收(即,细胞穿透肽,渗透肽)的分子。可以有效地在培养细胞和皮下肿瘤模型中实现siRNA诱导的基因敲低(相对于对照肿瘤为60%)。据我所知,这项工作提出了第一个将这些确切配体结合使用的纳米级递送系统,用于基因治疗-重要的是,这些配体使用聚乙二醇化磷脂(DSPE-PEG)束缚策略进行连接,从而实现了高密度(每个纳米粒子约200-2000个分子)的功能性配体展示。我的研究结果表明,叶酸和渗透素串联时,可通过两种模式改善纳米颗粒的递送能力:促进细胞摄取和增强纳米颗粒与靶细胞之间的亲和力。该多功能纳米颗粒平台还被用于递送反义核酸,该反义核酸可阻断microRNA活性并改变剪接。为此,我发现化学增强的电荷中性核酸类似物(特别是吗啉代和肽核酸)可以封装到PLGA纳米粒子中(每个纳米粒子约500个分子),而无需进行通常会混淆核酸递送的实验性静电操作。在细胞培养和小鼠肿瘤模型中评估了这种纳米颗粒系统的抗癌功效。两种形式的纳米粒子介导的基因治疗都降低了细胞活力,部分是通过增加细胞凋亡。在上皮癌细胞的治疗中,改变Mcl-1的剪接模式以产生其促凋亡同工型,其IC50约为360nM,而阻断microRNA miR-155的活性的IC50约为80nM。在体内进一步研究了miR-155的抑制作用。已经显示某些微RNA具有致癌功能,例如,RNA。 mir-155;此外,一些癌症取决于这些微小RNA癌基因的表达。我研究了在miR-155上瘾的淋巴瘤肿瘤模型中,传递microRNA阻断肽核酸的纳米颗粒抑制miR-155的能力。该关键的microRNA靶标的减弱产生抗肿瘤作用(约1周后,局部递送后肿瘤显示生长降低5倍,全身给药后显示降低2倍),这与抑制miR-155水平相关。证实该纳米颗粒递送系统是有前途的治疗平台。这项工作与药物输送和癌症基因治疗领域密切相关,因为它提出了一种纳米技术,该技术经过量身定制,可以通过唤起多种基因调控方法来有效,安全地实现与癌症相关的基因的受控表达。

著录项

  • 作者

    Cheng, Christopher Janmin.;

  • 作者单位

    Yale University.;

  • 授予单位 Yale University.;
  • 学科 Chemistry Biochemistry.;Nanotechnology.;Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 179 p.
  • 总页数 179
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号