首页> 外文学位 >The role of electrochemistry in the 2D assembly of colloidal particles on a planar electrode.
【24h】

The role of electrochemistry in the 2D assembly of colloidal particles on a planar electrode.

机译:电化学在平面电极上的胶体颗粒二维组装中的作用。

获取原文
获取原文并翻译 | 示例

摘要

The development of a quick, cheap, and reversible method for the synthesis of colloidal crystals would benefit the emerging field of photonic materials. An external electric field was used to assemble colloidal particles into a colloidal crystal onto a proximate electrode. The steady structure of the assembly depended on a number of system parameters, including the electric field strength and frequency, the presence of confining boundaries, and the dispersing electrolyte. For example, particles dispersed in NaHCO3 attracted each other to form a close-packed structure, but particles in KOH formed a diffuse structure, indicating a repulsive inter-particle interaction.;Net motion (and the subsequent assembly) among particles excited by an AC electric field occurred because of a break in symmetry between the motion of a single particle normal to the electrode and the electric field. The break in symmetry was parameterized with the phase angle between the oscillatory motion of a particle (as measured with Total Internal Reflection Microscopy (TIRM)) and the electric field. The experimentally measured phase angle was crucial to predicting whether particles attracted (as in NaHCO3) or repelled each other (as in KOH). The hypothesis for the origin of these effects was that faradaic current arising from electrochemical reactions on the electrode provided an out-of-phase force; the details herein describe the testing of this hypothesis.;The hypothesis was tested by measuring the phase angle of a particle proximate to an ideally polarizable electrode in a variety of electrolytes. In addition, the separation distance between particles near an ideally polarizable electrode was measured. No faradaic reactions are possible on an ideally polarizable electrode. Particle motion remained electrolyte dependent in both experiments despite the absence of electrochemical reactions on the electrode. These results indicated our hypothesis was incorrect.;The model for the motion of a single particle was revisited and updated in response to these results. Newton's second law was solved with inclusion of a colloidal force field, dynamic drag, and an electrophoretic driving force. The dynamic drag comprised three parts, namely boundary corrected Stokes drag, added inertia, and the Basset or "history" force. The electrophoretic driving force included a full description of the dynamic electrophoretic mobility of the particle at a finite value of kappaalpha. Theoretical predictions of the phase angle were in fair quantitative agreement with experimental measurements. In addition, these calculations revealed two origins of electrolyte dependence of the motion of a single particle. The first was the effect of electrolyte conductivity and the second was the electrolyte dependence of the dynamic electrophoretic mobility; both of these effects arise from the transport properties of the dispersing electrolyte.;In a parallel (but different) project, the motion of a single particle normal to a powered electrode was used as a probe of local electrochemical current. The technology, named the Imaging Ammeter, transduces the local electrochemical current from a light signal scattered from the particle (as measured with TIRM). Initial experiments demonstrated that the Imaging Ammeter does a good job of measuring local electrochemical current. Future work will scale the technique to a ∼1 cm2 sample with a "pixel" width of 100 mum or 10,000 measurements of local electrochemical current on a single sample.
机译:快速,廉价和可逆的合成胶体晶体方法的发展将有利于新兴的光子材料领域。使用外部电场将胶体颗粒组装成胶体晶体到邻近的电极上。组件的稳定结构取决于许多系统参数,包括电场强度和频率,限制边界的存在以及电解质的分散。例如,分散在NaHCO3中的粒子相互吸引形成密排结构,但KOH中的粒子形成扩散结构,表明粒子之间存在排斥性相互作用; AC激发的粒子之间存在净运动(以及随后的组装)。电场的产生是由于垂直于电极的单个粒子的运动与电场之间的对称性破裂。用粒子的振荡运动(用全内反射显微镜(TIRM)测量)和电场之间的相角来参数化对称性的破缺。实验测量的相角对于预测粒子是相互吸引(如在NaHCO3中)还是彼此排斥(如在KOH中)至关重要。产生这些效应的假设是,电极上的电化学反应产生的法拉第电流提供了异相力。通过在各种电解质中测量接近理想可极化电极的粒子的相角来测试该假设。另外,测量理想可极化电极附近的颗粒之间的分离距离。在理想的极化电极上不可能进行法拉第反应。尽管在电极上不存在电化学反应,但在两个实验中,颗粒运动仍然取决于电解质。这些结果表明我们的假设是错误的。;针对这些结果,重新研究和更新了单个粒子的运动模型。通过包含胶体力场,动态阻力和电泳驱动力来解决牛顿第二定律。动态阻力包括三个部分,即边界校正的斯托克斯阻力,增加的惯性和巴塞特或“历史”力。电泳驱动力完整描述了在kappaalpha有限值时粒子的动态电泳迁移率。相角的理论预测与实验测量结果在定量上是一致的。另外,这些计算揭示了电解质对单个颗粒运动的依赖性的两个起源。第一个是电解质电导率的影响,第二个是动态电泳迁移率对电解质的依赖性。这两种效果均来自分散电解质的传输特性。在一个平行(但不同)的项目中,垂直于供电电极的单个粒子的运动被用作局部电化学电流的探针。这项技术被称为成像电流表,可以从粒子散射的光信号(用TIRM测量)中转换出局部电化学电流。最初的实验表明,成像电流表在测量局部电化学电流方面做得很好。未来的工作将把该技术扩展到一个约1 cm2的样品,其“像素”宽度为100微米,或者在单个样品上进行10,000次局部电化学电流测量。

著录项

  • 作者

    Wirth, Christopher L.;

  • 作者单位

    Carnegie Mellon University.;

  • 授予单位 Carnegie Mellon University.;
  • 学科 Chemistry Physical.;Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 201 p.
  • 总页数 201
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号