首页> 外文学位 >Phase-contrast x-ray imaging of microstructure and fatigue-crack propagation in single-crystal nickel-base superalloys.
【24h】

Phase-contrast x-ray imaging of microstructure and fatigue-crack propagation in single-crystal nickel-base superalloys.

机译:单晶镍基高温合金的显微组织和疲劳裂纹扩展的相衬x射线成像。

获取原文
获取原文并翻译 | 示例

摘要

Single-crystal nickel-base superalloys are ubiquitous in demanding turbine-blade applications, and they owe their remarkable resilience to their dendritic, hierarchical microstructure and complex composition. During normal operations, they endure rapid low-stress vibrations that may initiate fatigue cracks. This failure mode in the very high-cycle regime is poorly understood, in part due to inadequate testing and diagnostic equipment. Phase-contrast imaging with coherent synchrotron x rays, however, is an emergent technique ideally suited for dynamic processes such as crack initiation and propagation. A specially designed portable ultrasonic-fatigue apparatus, coupled with x-ray radiography, allows real-time, in situ imaging while simulating service conditions.;Three contrast mechanisms -- absorption, diffraction, and phase contrast -- span the immense breadth of microstructural features in superalloys. Absorption contrast is sensitive to composition and crack displacements, and diffraction contrast illuminates dislocation aggregates and crystallographic misorientations. Phase contrast enhances electron-density gradients and is particularly useful for fatigue-crack studies, sensitive to internal crack tips and openings less than one micrometer.;Superalloy samples were imaged without external stresses to study microstructure and mosaicity. Maps of rhenium and tungsten concentrations revealed strong segregation to the center of dendrites, as manifested by absorption contrast. Though nominally single crystals, dendrites were misoriented from the bulk by a few degrees, as revealed by diffraction contrast. For dynamic studies of cyclic fatigue, superalloys were mounted in the portable ultrasonic-fatigue apparatus, subjected to a mean tensile stress of ∼50-150 MPa, and cycled in tension to initiate and propagate fatigue cracks. Radiographs were recorded every thousand cycles over the multimillion-cycle lifetime to measure micron-scale crack growth. Crack openings were very small, as determined by absorption and phase contrast, and suggested multiple fracture modes for propagation along {111} planes at room temperature, which was verified by finite element analysis. With increasing temperature, cracks became Mode I (perpendicular to the loading axis) in character and more sensitive to the microstructure. Advancing plastic zones ahead of crack tips altered the crystallographic quality, from which diffraction contrast anticipated initiation and propagation. These studies demonstrate the extreme sensitivity of x-ray radiography for detailed studies of superalloys and crack growth processes.
机译:单晶镍基高温合金在要求苛刻的涡轮叶片应用中无处不在,并且由于其树枝状,分层的微观结构和复杂的成分而具有出色的弹性。在正常运行期间,它们会承受快速的低应力振动,这可能会引发疲劳裂纹。人们对这种在高循环状态下的故障模式了解得很少,部分原因是测试和诊断设备不足。但是,具有相干同步加速器X射线的相衬成像是一种新兴技术,非常适合诸如裂纹萌生和扩展之类的动态过程。专门设计的便携式超声疲劳仪与X射线照相相结合,可以在模拟使用条件的同时进行实时原位成像;三种对比机制-吸收,衍射和相衬-跨越了微结构的巨大广度高温合金的特征。吸收对比对成分和裂纹位移敏感,而衍射对比则说明位错聚集体和晶体学取向错误。相衬增强了电子密度梯度,对疲劳裂纹研究特别有用,它对内部裂纹尖端和小于1微米的开口敏感。;对超合金样品进行了成像,而没有外部应力以研究其微观结构和镶嵌性。 absorption和钨的浓度图显示出强烈的偏析到树枝状晶体的中心,如吸收对比所表明的。尽管名义上是单晶,但从衍射对比可以看出,树枝状晶体在整体上错位了几度。为了动态研究循环疲劳,将超级合金安装在便携式超声疲劳设备中,承受约50-150 MPa的平均拉应力,并在拉力中循环以引发和扩展疲劳裂纹。在数百万个寿命周期内每千个周期记录一次射线照相,以测量微米级裂纹的扩展。裂纹的开口很小,这是由吸收和相衬确定的,并提出了在室温下沿{111}面传播的多种断裂模式,这通过有限元分析得到了验证。随着温度的升高,裂纹的特征变为I型(垂直于加载轴),并且对微观结构更加敏感。裂纹尖端之前的塑性区改变了晶体学质量,由此可知衍射对比可预见其萌生和传播。这些研究表明,对于高温合金和裂纹扩展过程的详细研究,X射线射线照相具有极高的敏感性。

著录项

  • 作者

    Husseini, Naji Sami.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Physics Optics.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 154 p.
  • 总页数 154
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:43:25

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号