首页> 外文学位 >Experimental study of seismic vibration effect on two-phase flow.
【24h】

Experimental study of seismic vibration effect on two-phase flow.

机译:地震振动对两相流影响的实验研究。

获取原文
获取原文并翻译 | 示例

摘要

This study is to investigate the seismic vibration effects on two-phase flow. Based on the seismic characteristics found in literature, the properties for designing a test facility to simulate vibration and the test conditions for adiabatic and diabatic (subcooled boiling) two-phase flows have been chosen. In order to perform this experiment, an annulus test section has been built and attached to a vibration module. For experimental investigation and visualization of two-phase flow, Pyrex-glass tubes have been utilized as a transparent test section and stainless steel instrumentation ports are designed to acquire experimental data. In the design process, calculations considering the resonance, natural frequency, structural deflection, material properties and vibration conditions for the vibration structure have been performed to choose a suitable vibration beam. The motion equations of the eccentric cam are also analyzed with respect to displacement (vibration amplitude), velocity and acceleration. Each design process is set for the goal of an economical, reliable and controllable vibration condition for the two-phase flow test section. In addition, the scaling laws for geometric similarity, hydrodynamic similarity and thermal similarity are taken into account for the annulus test section to simulate a fuel assembly sub-channel of a prototypic boiling water reactor (BWR).;Potential hydrodynamic and thermal effects for two-phase flow under seismic vibration are broken down and analyzed in detail. Based on the 1-D drift-flux model, the hydrodynamics effects are discussed with respect to the possible variations of distribution parameters, C0, and drift velocity, nugj, caused by the changes of the void distribution, bubble diameter and flow regimes. Sensitivity studies are carried out for analyzing these potential hydrodynamic effects. In addition, the void generation relations in a diabatic (subcooled boiling) two-phase flow system are taken into account for analyses of potential thermal effects, including the onset of nucleate boiling and onset of significant void (ONB-OSV) effect, wall nucleation effect and bulk phase change effect. Analyses of phenomenological changes and temperature distributions are performed for estimations of void changes due to vibration.;An extensive 1-D experimental database is assembled for adiabatic and subcooled boiling two-phase flow under stationary and vibration conditions. The adiabatic test results are used to examine and verify the potential hydrodynamic effects, whereas the subcooled boiling test results are compared and explained by proposed thermal effects. Several vibration effect maps were made in terms of flow conditions (jg>-j f> ), thermal conditions (NZu-N Sub), operation conditions (j f>-alpha>) and vibration conditions ( E-f and f-alpha) for adiabatic and subcooled boiling two-phase flow tests. Among these vibration effect maps, different effective vibration conditions and dominant effects can be seen by regions. In the jg>- jf> plots of adiabatic two-phase flow tests, the hydrodynamic effect is found to dominate. The void fraction is found to potentially decrease due to vibration in wall-peak bubbly flow regime and increase at the region close to bubbly-to-slug transition boundary. No significant change in void fraction is found in slug flow regime under vibration. In addition, the thermal effect due to vibration is presented on the NZu- NSub plots. Three regions representing void increase, no change and void decrease which are corresponding to thick thermal boundary layer (TBL), bulk saturation and near saturation with low flow and high subcooling conditions are presented for subcooled boiling flow under seismic vibration. Finally, the E-f and f- alpha plots express the effective vibration conditions for adiabatic and subcooled boiling flows, and the acceleration values are compared with existing earthquake intensity records. In summary, a systematic database covering wide ranges of seismic vibration conditions along with adiabatic/diabatic flow/thermal conditions has been built in this study, and the physical understanding of seismic vibration effect on two-phase flow has been developed based on the analyses of potential hydrodynamic and thermal effects. Several vibration effect maps on different planes have been proposed as important conclusions for seismic vibration effects on two-phase flow systems.
机译:本研究旨在探讨地震振动对两相流的影响。根据文献中的地震特征,选择了用于模拟振动的测试设备的特性以及绝热和绝热(过冷沸腾)两相流的测试条件。为了进行此实验,已建立了一个环形测试区并将其连接到振动模块上。为了进行两相流的实验研究和可视化,派热克斯玻璃管已用作透明测试段,并且设计了不锈钢仪器端口以获取实验数据。在设计过程中,已进行了考虑共振,固有频率,结构挠度,材料特性和振动结构振动条件的计算,以选择合适的振动梁。偏心凸轮的运动方程还针对位移(振动幅度),速度和加速度进行了分析。设定每个设计过程的目的都是为了使两相流测试部分的经济,可靠和可控制的振动条件。此外,在环空试验段中考虑了几何相似度,流体力学相似性和热相似性的比例定律,以模拟原型沸水反应堆(BWR)的燃料组件子通道。两个潜在的流体动力学和热效应分解并分析了地震作用下的两相流。基于一维漂移-通量模型,讨论了由孔隙分布,气泡直径和气泡的变化引起的分布参数C0和漂移速度可能变化的流体动力学效应。流态。进行了敏感性研究,以分析这些潜在的水动力效应。此外,还考虑了非绝热(过冷沸腾)两相流系统中的空洞生成关系,以分析潜在的热效应,包括发生核沸腾和发生重大空洞(ONB-OSV)效应,壁成核。效应和整体相变效应。进行了现象学变化和温度分布的分析,以估计由于振动引起的空隙变化。;建立了一个广泛的一维实验数据库,用于固定和振动条件下的绝热和过冷沸腾两相流。绝热测试结果用于检查和验证潜在的水动力效应,而过冷沸腾测试结果则通过拟议的热效应进行比较和解释。根据流动条件(-),热条件(NZu-N Sub),操作条件(-)和振动条件(Ef和f-alpha)制作了几个振动效果图)用于绝热和过冷沸腾两相流测试。在这些振动效果图中,可以按区域看到不同的有效振动条件和主导效果。在绝热两相流试验的-图中,发现流体动力效应起主要作用。发现空隙率可能由于壁峰气泡流动状态下的振动而减少,并在靠近气泡到团状过渡边界的区域增加。团状流态在振动下未发现空隙率的显着变化。此外,NZu-NSub图还显示了由于振动引起的热效应。提出了在地震振动下过冷沸腾流动的三个区域,分别代表了孔隙增加,不变和减少的三个区域,分别对应于厚热边界层(TBL),低流量和高过冷条件下的体积饱和和接近饱和。最后,E-f和f-alpha曲线表示绝热和过冷沸腾流的有效振动条件,并将加速度值与现有地震烈度记录进行比较。综上所述,本研究建立了一个系统数据库,该数据库涵盖了广泛的地震振动条件以及绝热/绝热流/热条件,并且在对地震分析的基础上建立了对地震振动对两相流影响的物理理解。潜在的水动力和热效应。提出了几个不同平面上的振动效果图,作为两相流系统地震振动效果的重要结论。

著录项

  • 作者

    Chen, Shao-Wen.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Nuclear.;Physics Radiation.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 221 p.
  • 总页数 221
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号