首页> 外文学位 >Recovery of the electric organ discharge after spinal cord transection in the weakly electric fish Apteronotus leptorhynchus.
【24h】

Recovery of the electric organ discharge after spinal cord transection in the weakly electric fish Apteronotus leptorhynchus.

机译:脊髓横断后弱电鱼Apteronotus leptorhynchus中电器官放电的恢复。

获取原文
获取原文并翻译 | 示例

摘要

Spinal cord injury in adult mammals can result in irreversible impairment or abolishment of motor function. Unlike mammals, lower vertebrates regenerate spinal cord tissue in damaged areas and gradually recovery behavioral function. The electromotor system, a bulbospinal circuit that controls the electric organ discharge (EOD) in weakly electric fish is ideally suited for studying anatomical and functional recovery after spinal cord injury for several reasons: (1) the neural circuit is simple, (2) the EOD provides a clear, noninvasive index of physiological and functional recovery, and (3) the continuous EOD has been extensively characterized in normal animals. Regeneration of spinal cord following tail amputation has been well studied in the electric fish, Apteronotus leptorhynchus. Structural and functional recovery is achieved through proliferation of endogenous precursor cells and differentiation of their progeny. This dissertation focuses on quantifying cellular proliferation and recovery of the EOD after complete spinal transection rather than amputation. Using bromodeoxyuridine (BrdU), I quantified proliferating cell number throughout the spinal cord following injury. Spinal transection significantly increased proliferation and/or survival as indicated by an elevated density of BrdU cells along the entire length of the spinal cords of spinally transected compared to sham and un-operated fish. In the second experiment, I examined recovery of locomotion and the EOD. I used two different procedures: local EOD recordings measured the output of each rostro-caudal segment of the electric organ and global EOD recordings measured the coherent output of the entire electric organ. Locomotion was restored between 35-45 days post-transection (dpt). The power of the local discharge gradually increased before reaching a plateau at 180 dpt. The results of these experiments suggest that A. leptorhynchus can reestablish functional locomotor and electromotor circuits following spinal cord transection. These findings indicate that spinal cord injury stimulates widespread cellular proliferation along the entire length of the apteronotid spinal cord. It is likely that the BrdU-labeled cells found 30 days after the injury participate in spinal cord repair and functional recovery.
机译:成年哺乳动物的脊髓损伤可导致不可逆转的损伤或运动功能丧失。与哺乳动物不同,低等脊椎动物在受损区域再生脊髓组织,并逐渐恢复行为功能。电动系统是控制弱电鱼中电器官放电(EOD)的球根脊髓回路,非常适合研究脊髓损伤后的解剖和功能恢复,其原因有以下几个:(1)神经回路简单,(2) EOD可提供清晰的,无创的生理和功能恢复指数,并且(3)在正常动物中,连续EOD已得到广泛表征。在电鱼Apteronotus leptorhynchus中,对截肢后脊髓的再生已有很好的研究。通过内源性前体细胞的增殖及其后代的分化来实现结构和功能的恢复。本文的研究重点是定量分析脊髓完全横断而不是截肢后EOD的细胞增殖和恢复情况。使用溴脱氧尿嘧啶核苷(BrdU),我量化了损伤后整个脊髓的增殖细胞数。与假手术和未手术的鱼相比,沿着横断的脊髓全长的BrdU细胞密度增加表明,脊髓横断显着增加了增殖和/或存活。在第二个实验中,我检查了运动和EOD的恢复情况。我使用了两种不同的程序:局部EOD记录测量了电器官的每个头尾段的输出,而全局EOD记录测量了整个电器官的相干输出。在横断后(dpt)35-45天之间恢复了运动。局部放电的功率逐渐增加,然后达到180 dpt的平稳水平。这些实验的结果表明,在脊髓横断后,瘦腰曲霉可以重新建立功能性运动和电动机回路。这些发现表明,脊髓损伤刺激了沿apteronotid脊髓的整个长度的广泛的细胞增殖。损伤后30天发现的BrdU标记的细胞可能参与了脊髓修复和功能恢复。

著录项

  • 作者

    Allen, Antino R.;

  • 作者单位

    Indiana University.;

  • 授予单位 Indiana University.;
  • 学科 Biology Neuroscience.Biology Physiology.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 99 p.
  • 总页数 99
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号