首页> 外文学位 >Transport kinetics, thermodynamics and thermal stability of the electrode materials for lithium ion batteries.
【24h】

Transport kinetics, thermodynamics and thermal stability of the electrode materials for lithium ion batteries.

机译:锂离子电池电极材料的传输动力学,热力学和热稳定性。

获取原文
获取原文并翻译 | 示例

摘要

A structural model to calculate the electrochemical interface area for a composite graphite electrode is described. A new equation using the model predicted area to calculate chemical diffusion coefficient ( DLi+ ) eliminates the effects from fabrication such as active mass ( mB) and geometric area (SGeo). The chemical diffusion coefficient values calculated for graphite electrodes of different thicknesses and porosities using the new equation are almost same as expected. The values of DLi+ in the graphite vary between 10-11.9 and 10 -9.9 cm2/s over the course of the lithium deintercalation in the graphite samples.; The electrochemical performances and power abilities of several natural graphite and artificial graphite samples were investigated as anode materials in lithium-ion batteries. All artificial graphite samples showed well-ordered graphitized structures and good reversible capacities. Irreversible capacity is related with crystallite size, particle size, and treatment of sample. The capacity decreases with an increase of the current in the intercalation process; while it is independent of the current in the deintercalation process. The reason is the chemical diffusion coefficient in deintercalation process is one or two orders of magnitude greater than that in the intercalation process.; Electrochemical performances of the natural graphite (Mag-10)/Li half-cell, LiNi0.8Co0.15Al0.05O2/Li half-cell, and LiNi0.8Co0.15Al0.05O2/Mag-10 full-cell are discussed in terms of reversible and irreversible capacity. Heat rate profiles of these cells cycled at various current levels are studied in terms of reversible and irreversible heat generation. The agreement between experiment data and calculated results is quite good at low and moderate current levels (≤C/5). The quantitative heat contributions of the cathode and anode to the overall cell heat generation are also determined.; Differential scanning calorimeter (DSC) is used in this study to evaluate the thermal runaway potential of high power lithium ion cells. The activation energies and enthalpies are calculated from the DSC traces for the specific exothermic reactions occurring at various temperatures for the lithiated anode and the delithiated cathode materials in the presence of the organic carbonate electrolyte. These findings provide insight into which components of the lithium-ion cell are most responsible for the thermal runaway condition.
机译:描述了计算复合石墨电极电化学界面面积的结构模型。使用模型预测面积计算化学扩散系数(DLi +)的新方程式消除了制造中的影响,例如有效质量(mB)和几何面积(SGeo)。使用新公式计算出的不同厚度和孔隙率的石墨电极的化学扩散系数值几乎与预期相同。在石墨样品中锂脱嵌的过程中,石墨中的DLi +值在10-11.9和10 -9.9 cm2 / s之间变化。研究了几种天然石墨和人造石墨样品作为锂离子电池负极材料的电化学性能和功率性能。所有人造石墨样品均显示出有序的石墨化结构和良好的可逆容量。不可逆容量与微晶尺寸,粒径和样品处理有关。在插入过程中,容量随着电流的增加而减小;在脱嵌过程中它与电流无关。原因是脱插过程中的化学扩散系数比插层过程中的化学扩散系数大一个或两个数量级。从以下方面讨论了天然石墨(Mag-10)/ Li半电池,LiNi0.8Co0.15Al0.05O2 / Li半电池和LiNi0.8Co0.15Al0.05O2 / Mag-10全电池的电化学性能。可逆和不可逆容量。这些电池在各种电流水平下循环的热速率曲线根据可逆和不可逆热的产生进行了研究。在中小电流水平(≤C/ 5)下,实验数据与计算结果之间的一致性非常好。还确定了阴极和阳极对整个电池发热的定量热贡献。差示扫描量热仪(DSC)用于本研究中以评估大功率锂离子电池的热失控电位。对于存在于有机碳酸盐电解质中的锂化阳极材料和去锂化阴极材料,在各种温度下发生的特定放热反应,由DSC迹线计算活化能和焓。这些发现为了解锂离子电池的哪些成分最可能导致热失控情况提供了见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号