首页> 外文学位 >Molecular dynamics simulation of interfacial tension and contact angle of Lennard-Jones fluid.
【24h】

Molecular dynamics simulation of interfacial tension and contact angle of Lennard-Jones fluid.

机译:Lennard-Jones流体界面张力和接触角的分子动力学模拟。

获取原文
获取原文并翻译 | 示例

摘要

Molecular techniques have been used to study interfacial tension for more than half century. Interfacial tensions regulate various phase change phenomena and heat transfer, especially when phase change occurs. At the sub-micron scales of MEMS devices, microscale evaporation and condensation, surface effects can dominate. The dynamics of thin film is studied here to quantify the effect of film thickness, system temperature and wall strength. When the film is thick, liquid-vapor interfacial tension is evaluated by integrating the difference between normal and tangential components of pressure tensor across the interface. Interfacial tension dependence on the film thickness is investigated and found to be weakly dependent. Strength of the solid surface plays an important role for a stable film adjacent to the solid surface.; Liquid droplet is simulated adjacent to a semi-infinite solid surface. Contact angle of a static droplet is investigated at different temperatures and the solid-fluid interaction strength. Hamaker constant of the fluid-solid combination, fluid density and solid-fluid Lennard-Jones length parameter are found to be important parameters controlling the contact angle. Variation of the contact angle with all necessary parameters are discussed.; Interfacial tension of the liquid-vapor interface is calculated using Molecular Dynamics simulation with tail correction to correct the finite cutoff radius used in the simulation. The resultant surface tension, liquid density and vapor density are found to be well predicted when compared with experimental data for Ar (LJ fluid). Liquid and vapor densities were found to depend on the finite cutoff radius which motivates the use of an untruncated force/potential calculation using p3M (particle-particle particle-mesh) method which was implemented for force and surface tension evaluation. Each term is computed by splitting it into short and long range parts. This does not require the tail correction. It is found to be very accurate as well as promise to be computationally efficient for larger system. In our case, it is found to be similar to computational time for neighbor-list method with cutoff radius of 4.5sigma.
机译:分子技术已被用于研究界面张力超过半个世纪。界面张力调节各种相变现象和热传递,特别是在发生相变时。在MEMS器件的亚微米尺度上,微观尺度的蒸发和凝结会影响表面效应。本文研究了薄膜动力学,以量化薄膜厚度,系统温度和壁强度的影响。当膜很厚时,通过对跨界面的压力张量的法向分量和切向分量之间的差异进行积分,可以评估液-汽界面张力。研究了界面张力对薄膜厚度的依赖性,并发现其具有较弱的依赖性。固体表面的强度对于与固体表面相邻的稳定膜起着重要作用。在与一个半无限固体表面相邻的位置模拟液滴。研究了静态液滴在不同温度下的接触角和固液相互作用强度。发现流固结合的Hamaker常数,流体密度和固流Lennard-Jones长度参数是控制接触角的重要参数。讨论了所有必要参数下接触角的变化。使用分子动力学模拟和尾部校正来校正在模拟中使用的有限截止半径,从而计算出液-气界面的界面张力。与Ar(LJ流体)的实验数据相比,可以很好地预测所得的表面张力,液体密度和蒸气密度。发现液体和蒸气的密度取决于有限的截止半径,这激发了使用p3M(粒子-粒子-粒子-网格)方法进行不截断的力/势计算,该方法用于评估力和表面张力。通过将每个术语分为短范围和长范围部分进行计算。这不需要尾部校正。人们发现它非常准确,并且有望在较大的系统上实现高效的计算。在我们的案例中,发现它的近似半径为4.5sigma的邻居列表方法的计算时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号