首页> 外文学位 >Manipulation of Energy Propagation, Redirection, and Dissipation by Tunable Plasmonic Nanostructures.
【24h】

Manipulation of Energy Propagation, Redirection, and Dissipation by Tunable Plasmonic Nanostructures.

机译:可调谐等离子体纳米结构对能量传播,重定向和耗散的操纵。

获取原文
获取原文并翻译 | 示例

摘要

Plasmons, the collective electronic oscillations of metallic nanoparticles and nanostructures, are at the forefront of the development of nanoscale optics. Metallic nanostructures with their geometry-dependent optical resonances are a topic of intense current interest due to their ability to manipulate light in ways not possible with conventional optical materials. As optical frequency nanoantennas, reduced-symmetry plasmonic nanoparticles have light-scattering properties that depend strongly on geometry, orientation, and variations in dielectric environment. Particularly fascinating aspect of these systems is the recently realized possibility of creating optical frequency "magnetic plasmon" responses of comparable magnitude to the "electric plasmon" response. It is of our central interest to understand better the plasmonic system so as to manipulate the energy transport mechanism.;With the much more advanced numerical calculations, and based on the Finite Element Method (FEM) and Finite-Difference Time-Domain (FDTD) method, we are now able to study various kinds of nanostructures for different interesting optical properties.;With the help of FDTD, we show the geometry dependent dissipation rate in different nanosystems. We brought up a new damped harmonic oscillator model to account for the observed difference. We show that our new model better completes the full map of the energy dissipation mechanism, and the predicted outcome agreed very well with the FDTD calculations.;Elliptical nanorings were investigated by applying both FEM and FDTD methods. The multiple plasmonic resonances exhibited by elliptical nanorings and the well tunability of the nanosystem make elliptical nanorings very interesting. Different features can be realized by controlling the aspect ratios of the elliptical nanorings.;We show another interesting nanostructures, light bending nanocup as well. Due to its unique light scattering properties, nanocup is a very promising candidate in solar cell applications. We studied more about its light redirection properties with the presence of a dielectric substrate and its sensitivity to the subtle geometry differences.;Plasmonic heptamer has been shown to possess an intriguing Fano resonance due to the interference of its hybridized subradiant and super-radiant modes. Neighboring fused heptamers can support magnetic plasmons due to the generation of antiphase ring currents in the metallic nanoclusters. We use such artificial plasmonic molecules as basic elements to construct low-loss plasmonic waveguides and devices. The manipulation of magnetic plasmons in heptamer interconnects can further be expanded to more complex systems, for example, by integrating more optical paths to achieve multiple input and output plasmonic networks. With their compact dimensions, outstanding low-loss propagation characteristics, and range of functionalities, magnetic plasmon-based devices based on these structures should be key to the further development of high-performance energy transport components in information processing and data storage applications.
机译:等离子体是金属纳米粒子和纳米结构的集体电子振荡,是纳米光学发展的最前沿。具有取决于几何形状的光学共振的金属纳米结构由于其以常规光学材料不可能的方式操纵光的能力而成为当前引起人们极大关注的话题。作为光频率纳米天线,降低对称性的等离激元纳米粒子具有强烈依赖于几何形状,方向和介电环境变化的光散射特性。这些系统的特别令人着迷的方面是最近认识到的产生与“电等离子体激元”响应相当的光频率“磁等离子体激元”响应的可能性。更好地理解等离激元系统,以操纵能量传输机制,是我们的中心利益。;借助更先进的数值计算,并基于有限元方法(FEM)和有限时域(FDTD)方法,我们现在能够研究具有不同有趣光学特性的各种纳米结构。;借助FDTD,我们展示了不同纳米系统中与几何相关的耗散率。我们提出了一个新的阻尼谐波振荡器模型来解决观察到的差异。我们证明了我们的新模型更好地完成了能量耗散机制的完整图,并且预测结果与FDTD计算非常吻合。;通过应用FEM和FDTD方法研究了椭圆形纳米环。椭圆形纳米环表现出的多个等离子体共振和纳米系统的良好可调谐性使椭圆形纳米环非常有趣。通过控制椭圆形纳米环的长宽比,可以实现不同的功能。我们展示了另一个有趣的纳米结构,即光弯曲纳米杯。由于其独特的光散射特性,nanocup在太阳能电池应用中是非常有前途的候选材料。我们研究了更多有关其在介电基板存在下的光重定向特性及其对微妙的几何差异的敏感性的研究。由于其杂化的亚辐射和超辐射模式的干扰,已经证明了等离子体七聚体具有令人感兴趣的Fano共振。相邻的熔融七聚体由于在金属纳米团簇中产生反相环电流而可以支持磁等离子体激元。我们使用这种人工等离激元分子作为基本元素来构建低损耗的等离激元波导和器件。例如,通过集成更多的光路以实现多个输入和输出等离激元网络,可以进一步将七聚体互连中的磁等离激元的操作扩展到更复杂的系统。凭借其紧凑的尺寸,出色的低损耗传播特性和功能范围,基于这些结构的基于等离激元的基于磁等离激元的设备应成为信息处理和数据存储应用中高性能能量传输组件进一步发展的关键。

著录项

  • 作者

    Li, Yang.;

  • 作者单位

    Rice University.;

  • 授予单位 Rice University.;
  • 学科 Nanoscience.;Nanotechnology.;Optics.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 123 p.
  • 总页数 123
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号