首页> 外文学位 >Dendritic polymers as novel targeted anti-cancer therapeutics. Atomic force microscopy and molecular dynamics simulations.
【24h】

Dendritic polymers as novel targeted anti-cancer therapeutics. Atomic force microscopy and molecular dynamics simulations.

机译:树突状聚合物作为新型靶向抗癌治疗剂。原子力显微镜和分子动力学模拟。

获取原文
获取原文并翻译 | 示例

摘要

Polyamidoamine (PAMAM) dendrimers are promising candidates for the development of targeted anti-cancer drugs. Special properties of these branched polymers make them versatile nanometer scale components for creating multifunctional macromolecules capable of detecting and killing tumor cells without harming healthy tissue.; This dissertation investigates the structure and function of dendrimers in this context at length scales of only several nanometers. Using experimental and theoretical methods, this study demonstrates the link between molecular engineering at the nanoscale and biologic function at the cellular level.; Molecular dynamics simulations show that dendrimers are highly flexible and capable of forming multiple interaction sites between several of their branch ends and a substrate. This opens the possibility of improved cell targeting through multivalent receptor-binding. The ability of the polymers to deform is investigated as a function of dendrimer generation (2--5). The results are in good agreement with atomic force microscopy (AFM) experiments.; AFM is also employed to observe the effect of dendrimers on membranes in real time. Using phospholipid bilayers as a model system, it is shown that the effect of PAMAMs on a membrane strongly depends on the dendrimer generation, architecture, and chemical properties of the branch end-groups. The data indicates that certain dendrimers (generation ≥5) cause the formation of small holes (∼15--40 nm in diameter) in a previously intact lipid bilayer. This observation reveals a new possible mechanism leading to unwanted non-specific cell uptake and cytotoxicity. Hole formation in lipid membranes can be avoided by reducing dendrimer size (generation) and charge. In particular, charge neutral acetamide-capped generation 5 PAMAMs do not have the ability to remove lipids from the bilayers.; A possible mechanism for the formation of holes in lipid bilayers is proposed. It involves the formation of vesicle-like aggregates consisting of a dendrimer surrounded by layers of lipid molecules. Dynamic light scattering measurements as well as 31P NMR data support this explanation. In addition, a theoretical framework for the self-assembly of lipid vesicles is developed and used to explain the experimental observations. The findings are also compared to recent biological studies in animal models and cell culture.
机译:聚酰胺胺(PAMAM)树状聚合物是开发靶向抗癌药物的有希望的候选者。这些支链聚合物的特殊性能使其成为通用的纳米级组分,可用于制造能够检测和杀死肿瘤细胞而不损害健康组织的多功能大分子。本文在仅几纳米的长度尺度下研究了树枝状聚合物的结构和功能。使用实验和理论方法,该研究证明了纳米级分子工程与细胞水平生物功能之间的联系。分子动力学模拟表明,树枝状聚合物具有很高的柔韧性,并能够在其多个分支末端与底物之间形成多个相互作用位点。这打开了通过多价受体结合改善细胞靶向的可能性。研究了聚合物变形能力与树枝状聚合物生成的关系(2--5)。结果与原子力显微镜(AFM)实验非常吻合。 AFM还用于实时观察树枝状聚合物对膜的影响。使用磷脂双层作为模型系统,表明PAMAM对膜的作用在很大程度上取决于树枝状大分子的生成,结构和分支端基的化学性质。数据表明某些树状聚合物(生成≥5)会在先前完整的脂质双层中形成小孔(直径约15--40 nm)。该观察揭示了导致不想要的非特异性细胞摄取和细胞毒性的新的可能机制。可以通过减少树枝状聚合物的大小(生成)和电荷来避免脂质膜中的孔形成。特别地,电荷中性乙酰胺封端的第5代PAMAM不具有从双层中去除脂质的能力。提出了在脂质双层中形成孔的可能机制。它涉及由树状聚合物包围脂质分子层的囊泡状聚集体的形成。动态光散射测量以及31P NMR数据支持这一解释。此外,脂质囊泡自组装的理论框架被开发并用于解释实验观察。还将这些发现与动物模型和细胞培养中的最新生物学研究进行比较。

著录项

  • 作者

    Mecke, Almut.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Biophysics Medical.; Health Sciences Pharmacology.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 162 p.
  • 总页数 162
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物物理学;药理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号