首页> 外文学位 >Metal Oxide and Group III-nitride Nanomaterials for Photoelectrochemical Water Splitting.
【24h】

Metal Oxide and Group III-nitride Nanomaterials for Photoelectrochemical Water Splitting.

机译:用于光电化学水分解的金属氧化物和III族氮化物纳米材料。

获取原文
获取原文并翻译 | 示例

摘要

Photoelectrochemical (PEC) cell is a device generated hydrogen fuel through an environmentally friendly method. The earliest report should date back to 1972. Honda and Fujishima first demonstrated solar water splitting by using titanium dioxide as photoanode in the cell. Then extensive efforts have been devoted to improving the solar-to-hydrogen (STH) conversion efficiency and decreasing the cost. However, current the efficiency of PEC device was limited on finding out a suitable photoanode material. The ideal photoanode material should have a good bandgap, favorable bandgap position, chemically stable and low cost. Therefore, this thesis would focus on studying different photoanode materials including GaN, TiO2 and Fe2O 3 to achieve high PEC water oxidation performance. In this thesis, I will first designed GaN nanowires on carbon cloth via a chemical vapor deposition (CVD) method and demonstrated significant photoactivity for photoelectrochemical water oxidation. In addition, our group used to report a facile and general strategy to fundamentally improve the performance of TiO2 nanowires for PEC water splitting. However, there are some concerns about the real effects under higher hydrogen treated temperature as well as the stability of oxygen vacancies in TiO2. Therefore I investigated the effect of hydrogenation temperature and the stability of oxygen vacancies in TiO2 photoanodes. Furthermore, there are few reports about the study on the long term stability of TiO2 photoanode even though most scholars used to think TiO 2 belongs to one of the most stable photoanode materials. So I carried out the first long term photostability measurement on various phases TiO 2 photoanodes including rutile, anatase and mixed phased and found TiO 2 photoanodes were not stable as people expected. Then I investigated the mechanism of the instability of TiO2 and carried out two strategies to stabilize TiO2 materials in the PEC cell. Finally, I created a facile acid treated method on hematite to substantially enhance the PEC activity. I found the enhanced photocurrent is due to improved efficiency of charge separation as well as potential passivation of surface electron traps.
机译:光电化学(PEC)电池是一种通过环保方法生成氢燃料的设备。最早的报告应该追溯到1972年。本田和藤岛首次通过使用二氧化钛作为电池中的光电阳极演示了太阳能水的分裂。然后,人们已经致力于提高太阳能到氢(STH)的转换效率并降低成本。然而,当前PEC装置的效率在寻找合适的光电阳极材料上受到限制。理想的光阳极材料应具有良好的带隙,有利的带隙位置,化学稳定性和低成本。因此,本文将重点研究包括GaN,TiO2和Fe2O 3在内的各种光阳极材料,以实现高PEC水氧化性能。在本文中,我将首先通过化学气相沉积(CVD)方法在碳布上设计GaN纳米线,并证明了其对光电化学水氧化具有显着的光活性。此外,我们的研究小组过去曾报告过一种从根本上改善TiO2纳米线用于PEC水分解的性能的简便而通用的策略。然而,对于在较高的氢气处理温度下的实际效果以及TiO2中氧空位的稳定性存在一些担忧。因此,我研究了TiO2光阳极中氢化温度和氧空位稳定性的影响。此外,尽管大多数学者曾经认为TiO 2属于最稳定的光电阳极材料之一,但有关TiO2光电阳极长期稳定性研究的报道很少。因此,我对金红石,锐钛矿和混合相等各种相的TiO 2光阳极进行了首次长期光稳定性测试,发现TiO 2光阳极不稳定。然后,我研究了TiO2不稳定性的机理,并采取了两种策略来稳定PEC电池中的TiO2材料。最后,我在赤铁矿上创建了一种简便的酸处理方法,以大大增强PEC活性。我发现增强的光电流归因于电荷分离效率的提高以及表面电子陷阱的潜在钝化。

著录项

  • 作者

    Yang, Yi.;

  • 作者单位

    University of California, Santa Cruz.;

  • 授予单位 University of California, Santa Cruz.;
  • 学科 Chemistry.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 140 p.
  • 总页数 140
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号