首页> 外文学位 >Development of polymer-polysaccharide hydrogels for controlling drug delivery.
【24h】

Development of polymer-polysaccharide hydrogels for controlling drug delivery.

机译:用于控制药物递送的聚合物-多糖水凝胶的开发。

获取原文
获取原文并翻译 | 示例

摘要

The use of polymers as biomaterials has evolved over the past several decades, encompassing an expanding synthetic toolbox and many bio-mimetic approaches. Both synthetic and natural polymers have been used as components for biomaterials as their unique chemical structures can provide specific functions for desired applications. Of these materials, heparin, a highly sulfated naturally occurring polysaccharide, has been investigated extensively as a core component in drug delivery platforms and tissue engineering. The goal of this work was to further explore the use of heparin via conjugation with synthetic polymers for applications in drug delivery.;We begin by investigating low molecular weight heparin (LMWH), a depolymerized heparin that is used medicinally in the prevention of thrombosis by subcutaneous injection or intravenous drip. Certain disease states or disorders require frequent administration with invasive delivery modalities leading to compliance issues for individuals on prolonged therapeutic courses. To address these issues, a long-term delivery method was developed for LMWH via subcutaneous injection of in situ hydrogelators. This therapy was accomplished by chemical modification of LMWH with maleimide functionality so that it may be crosslinked into continuous hydrogel networks with four-arm thiolated polyethylene glycol (PEG-SH). These hydrogels degrade via hydrolysis over a period of weeks and release bioactive LMWH with first-order kinetics as determined by in vitro and in vivo models, thus indicating the possibility of an alternative means of heparin delivery over current accepted methodologies.;Evaluation of the maleimide-thiol chemistries applied in the LMWH hydrogels revealed reversibility for some conjugates under reducing conditions. Addition chemistries, such as maleimide-thiol reactions, are widely employed in biological conjugates and are generally accepted as stable. Here we show that the resulting succinimide thioether formed by the Michael type addition of thiol derivatives to N-ethylmaleimide (NEM) undergoes retro and exchange reactions in the presence of other thiol compounds at physiological pH and temperature. Model studies of NEM conjugated to various thiols (4-mercaptophenylacetic acid (MPA), N-acetylcysteine, or 3-mercaptopropionic acid (MP)), incubated with a naturally occurring reducing agent, glutathione, showed half-lives from 20-80 hrs with extents of conversion from 20-90% for MPA and N-acetylcysteine conjugates. The kinetics of the retro reactions and extent of exchange can be modulated by the Michael donor's reactivity; therefore the degradation of maleimide-thiol adducts could be tuned for controlled release of drugs or degradation of materials at timescales different than those currently possible via disulfide-mediated release.;The reduction sensitive maleimide-thiol chemistry was then investigated as a crosslinking mechanism for LMWH hydrogels. Crosslinking maleimide functionalized LMWH with PEG functionalized with thiophenyl functionalities imparted glutathione sensitivity. 4-mercaptophenylpropionic acid and 2,2-dimethyl-3-(4-mercaptophenyl)propionic acid, induced sensitivity to glutathione as shown by a decrease in degradation time of 4x and 5x respectively. The pseudo-first order retro reaction constants were approximately an order of magnitude slower than hydrogels crosslinked via disulfide linkages, indicating the potential use of the retro succinimide-thioether covalent bonds for reduction mediated release and/or degradation with increased blood stability and prolonged drug delivery timescales compared to disulfide chemistries. In summary, this work highlights the use of polymer-polysaccharide hydrogels composed of LMWH and PEG as investigated for drug delivery and as a tool for elucidating a novel reduction sensitive controlled release mechanism.
机译:在过去的几十年中,聚合物作为生物材料的使用已得到发展,其中包括扩展的合成工具箱和许多仿生方法。合成聚合物和天然聚合物都已用作生物材料的成分,因为它们独特的化学结构可以为所需的应用提供特定的功能。在这些材料中,肝素是一种高度硫酸化的天然存在的多糖,已被广泛研究为药物递送平台和组织工程中的核心成分。这项工作的目的是通过与合成聚合物结合使用,进一步探索肝素在药物输送中的应用。;我们首先研究低分子量肝素(LMWH),这是一种脱聚的肝素,可用于预防血栓形成的血栓形成。皮下注射或静脉滴注。某些疾病状态或病症需要通过有创的输送方式进行频繁给药,从而导致长期治疗过程中个体的依从性问题。为了解决这些问题,通过皮下注射原位水凝胶剂为LMWH开发了一种长期递送方法。该疗法是通过对具有马来酰亚胺官能团的LMWH进行化学修饰来完成的,从而使其可以与四臂硫醇化聚乙二醇(PEG-SH)交联成连续的水凝胶网络。这些水凝胶在数周的时间内会通过水解作用降解,并释放具有一级动力学的生物活性LMWH,这是通过体外和体内模型确定的,因此表明在目前公认的方法学中,肝素的另一种递送方式的可能性。用于LMWH水凝胶的硫醇化学方法在还原条件下显示了某些结合物的可逆性。加成化学,例如马来酰亚胺-硫醇反应,被广泛用于生物结合物中,并且通常被认为是稳定的。在这里,我们表明,在生理pH和温度下,在存在其他硫醇化合物的情况下,由硫醇衍生物的迈克尔类型加成到N-乙基马来酰亚胺(NEM)形成的琥珀酰亚胺硫醚经历逆向和交换反应。与各种硫醇(4-巯基苯乙酸(MPA),N-乙酰半胱氨酸或3-巯基丙酸(MP))缀合的NEM的模型研究与天然还原剂谷胱甘肽一起孵育,显示半衰期为20-80小时对于MPA和N-乙酰半胱氨酸缀合物,其转化程度为20-90%。逆反应的动力学和交换程度可以通过迈克尔·施主的反应来调节。因此,可以调节马来酰亚胺-硫醇加合物的降解,以控制药物释放或以不同于目前通过二硫化物介导的释放可能发生的时间尺度降解材料。;然后研究了还原敏感性马来酰亚胺-硫醇化学方法作为LMWH的交联机理水凝胶。马来酰亚胺官能化的LMWH与用硫代苯基官能团官能化的PEG交联赋予了谷胱甘肽敏感性。 4-巯基苯基丙酸和2,2-二甲基-3-(4-巯基苯基)丙酸诱导了对谷胱甘肽的敏感性,降解时间分别减少了4倍和5倍。拟一级逆向反应常数比通过二硫键交联的水凝胶慢大约一个数量级,表明潜在的琥珀酰亚胺-硫醚共价键可用于减少介导的释放和/或降解,并具有增加的血液稳定性和延长的药物递送与二硫化物化学物质相比的时间尺度。总而言之,这项工作着重研究了由LMWH和PEG组成的聚合物-多糖水凝胶的用途,该水凝胶已被研究用于药物传递,并作为阐明新颖的还原敏感性控释机制的工具。

著录项

  • 作者

    Baldwin, Aaron David.;

  • 作者单位

    University of Delaware.;

  • 授予单位 University of Delaware.;
  • 学科 Engineering Materials Science.;Engineering Biomedical.;Chemistry Pharmaceutical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 207 p.
  • 总页数 207
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号