首页> 外文学位 >Designing Peptides to Target Membrane Lipids and to Evaluate Fluorination of Proteins.
【24h】

Designing Peptides to Target Membrane Lipids and to Evaluate Fluorination of Proteins.

机译:设计用于靶向膜脂质和评估蛋白质氟化的肽。

获取原文
获取原文并翻译 | 示例

摘要

My graduate research has used engineered peptides to perturb the non-covalent interactions in protein folding, protein-protein association and protein-membrane association. We have focused on understanding the fundamental principles of molecular recognition behind protein-protein and protein-membrane interactions, and further using these principles in protein engineering. This thesis includes three projects.;(I) Towards Small Molecule Receptors for Membrane Lipids: A Case Study on Phosphatidylserine. The lipid composition and distribution of cell membranes play important roles in regulating the physiology of the cell. The lipid composition of plasma membranes is one characteristic feature that can be used to identify cell types and functions. Molecules that specifically recognize a particular lipid are useful as imaging probes for targeting cells or tissues of interest. Protein based lipid binding probes have intrinsic limitations due to their large size and poor pharmacokinetic properties such as slow clearance rate and poor in vivo stability. A plausible strategy to achieve a probe with small size and high binding affinity and selectivity is to use a peptide to mimic the protein lipid-binding domains. As a case study, a cyclic peptide that specifically targets phosphatidylserine containing membranes has been developed. This cyclic peptide is potentially capable of imaging apoptosis in vivo, and the strategy of developing this cyclic peptide can be generalized to the design of peptide-based probes for other lipid species. My research has pointed out a challenging but feasible way to design a peptide that achieves specificity and affinity similar to lipid-binding proteins.;(II) Study of Apoptotic Cell Membrane (ACM) Permeant Molecules . Noninvasive imaging of apoptosis is highly desirable for the diagnosis of a variety of diseases, as well as for the early prognosis of anticancer treatments. One characteristic feature of apoptotic cells that has been targeted for developing specific biomarkers is enhanced membrane permeability compared to that of healthy cells. Several unrelated molecules that are capable of selectively penetrating the apoptotic cell membrane (ACM) have recently been reported. However, the origin of the altered ACM permeability is poorly understood, as is the scope of molecular structures that can permeate through the ACM. Herein, we report a systematic investigation on the altered ACM permeability. Our results show that simple modifications of commonly used dyes (e.g. fluorescein) afford specific entry into cells at the early stages of apoptosis. The ACM appears to be permeable to molecules of various functional groups and charge, but does discriminate against molecules of large size. The new findings reported here greatly expand the pool of small molecules for imaging cell death, thus facilitating the development of noninvasive imaging agents for apoptosis.;(III) Study of Aromatic-Fluorinated Aromatic Interactions in Peptide Systems. Therapeutic proteins have been through a remarkable expansion in the last two decades. A general problem that they are facing is poor stability. Protein engineering focuses on solving this problem by incorporating unnatural amino acids into protein sequences to purposefully modify protein structures. Fluorinated aliphatic amino acids have been demonstrated to be effective in stabilizing protein structures and functioning as recognition motifs. In contrast, fluorinated aromatic amino acids are less studied. We investigated the effect of perturbation of fluorination on aromatic residues on the stability of protein model systems, as well as the influence on protein-protein association behavior. The results of this study provided a fundamental understanding of aromatic interactions in protein systems, and guidelines for protein engineering with fluorinated aromatics for stabilizing protein structures or directing specific protein-protein interactions.
机译:我的研究生研究使用工程改造的多肽来扰乱蛋白质折叠,蛋白质-蛋白质结合和蛋白质-膜结合中的非共价相互作用。我们专注于理解蛋白质-蛋白质和蛋白质-膜相互作用背后的分子识别的基本原理,并在蛋白质工程中进一步使用这些原理。本论文包括三个项目。(I)面向膜脂质的小分子受体:以磷脂酰丝氨酸为例。脂质的组成和细胞膜的分布在调节细胞生理中起重要作用。质膜的脂质组成是可用于鉴定细胞类型和功能的一种特征。特异性识别特定脂质的分子可用作靶向目标细胞或组织的成像探针。基于蛋白质的脂质结合探针由于其较大的尺寸和不良的药代动力学特性(如清除速度慢和体内稳定性差)而具有固有的局限性。实现具有小尺寸和高结合亲和力和选择性的探针的可行策略是使用肽模拟蛋白质脂质结合结构域。作为案例研究,已开发出一种特异性靶向含磷脂酰丝氨酸膜的环状肽。该环状肽潜在地能够在体内成像细胞凋亡,并且开发该环状肽的策略可以推广到针对其他脂质种类的基于肽的探针的设计。我的研究指出了设计具有类似于脂质结合蛋白的特异性和亲和力的肽的富有挑战性但可行的方法。(II)凋亡细胞膜(ACM)渗透分子的研究。凋亡的非侵入性成像对于多种疾病的诊断以及抗癌治疗的早期预后是非常需要的。与健康细胞相比,已经被靶向开发特定生物标志物的凋亡细胞的一个特征性特征是增强的膜通透性。最近已经报道了几种能够选择性地穿透凋亡细胞膜(ACM)的无关分子。但是,人们对ACM渗透性改变的起因以及可透过ACM渗透的分子结构的范围了解甚少。在此,我们报告了对改变的ACM渗透性的系统研究。我们的结果表明,常用染料(例如荧光素)的简单修饰可在凋亡的早期阶段特异性进入细胞。 ACM似乎可渗透各种官能团和电荷的分子,但确实能区分大分子。此处报道的新发现大大扩展了用于成像细胞死亡的小分子库,从而促进了用于细胞凋亡的非侵入性成像剂的开发。;(III)肽系统中的芳基氟化芳族相互作用的研究。在过去的二十年中,治疗性蛋白质经历了惊人的发展。他们面临的一个普遍问题是稳定性差。蛋白质工程致力于通过将非天然氨基酸掺入蛋白质序列以有目的地修饰蛋白质结构来解决该问题。氟化脂族氨基酸已被证明可有效稳定蛋白质结构并发挥识别基序的作用。相反,对氟化芳族氨基酸的研究较少。我们研究了氟化物对芳香族残基的扰动对蛋白质模型系统稳定性的影响,以及对蛋白质-蛋白质缔合行为的影响。这项研究的结果提供了对蛋白质系统中芳香族相互作用的基本理解,并为使用含氟芳香族化合物进行蛋白质工程以稳定蛋白质结构或指导特定蛋白质-蛋白质相互作用提供了指导。

著录项

  • 作者

    Zheng, Hong.;

  • 作者单位

    Boston College.;

  • 授予单位 Boston College.;
  • 学科 Chemistry General.;Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 155 p.
  • 总页数 155
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号