首页> 外文学位 >Particle imaging diagnostics and stacking dynamics in microfluidic systems.
【24h】

Particle imaging diagnostics and stacking dynamics in microfluidic systems.

机译:微流体系统中的粒子成像诊断和堆叠动力学。

获取原文
获取原文并翻译 | 示例

摘要

In recent times considerable interest has been focused on the design of miniaturized fluidic devices for performing various chemical analysis functions including fluid transport, mixing, and separation. The development of diagnostics to study fluid flow in microfluidic channels is of prime importance. In this dissertation, the application of particle-based diagnostics to microfluidic systems is described. Micron-resolution particle image velocimetry (muPIV) is validated as a quantitative diagnostic tool for flow fields in microfluidic systems by conducting full-field velocity measurements in pressure-driven flows. There are no deviations from conventional theory for flows in channels of order 50 mum dimensions. Velocity fields from the application of both muPIV and particle tracking velocimetry (PTV) to flow at a cross-channel intersection are presented and compared with results from numerical simulations performed with CFDRC-ACE+. A measurement depth for PTV, based on the decay of the cross-correlation coefficient between a Gaussian mask and reference particle images is proposed.;The design and validation of a particle imaging system for quantifying velocity fields in electrokinetic microflows has been accomplished. Individual particle displacements were measured with PTV to establish the particle electrophoretic mobility distributions. Desorption of coatings from channel walls is quantitatively demonstrated through particle mobility distributions. Spheres, whose electrophoretic mobilities have been calibrated, are introduced as tracer particles into electrolyte systems to make quantitative measurements of the velocity field. These measurements enable the demonstration of similarity between the electric and velocity fields for electrokinetic flows. The depth-resolved measurement capability of muPIV is exploited to measure distinct electroosmotic mobilities in a hybrid microchannel system. An experimental investigation of field-amplified sample stacking by introducing microspheres into the flow field is reported. A one-dimensional lubrication model for the temporal development of the internal pressure gradient generated is presented and good agreement with measurements is shown. As a second application of muPIV in heterogeneous electrolyte systems, polystyrene spheres are introduced in two co-flowing streams in a T-channel system with transverse conductivity gradients to demonstrate a novel separation of charged particles in solution. Numerical simulations with FEMLAB confirm the generation of a transverse electric field in electrokinetic flows with transverse conductivity gradients.
机译:近年来,人们对设计用于执行各种化学分析功能(包括流体传输,混合和分离)的微型流体装置的关注已引起广泛关注。开发用于研究微流体通道中流体流动的诊断程序至关重要。本文介绍了基于粒子的诊断技术在微流体系统中的应用。通过在压力驱动的流动中进行全场速度测量,微米分辨率的粒子图像测速仪(muPIV)被验证为用于微流体系统中流场的定量诊断工具。对于尺寸为50微米的通道中的流量,与传统理论没有任何偏差。给出了将muPIV和粒子跟踪测速(PTV)应用于跨通道相交处的速度场,并将其与CFDRC-ACE +进行的数值模拟结果进行了比较。提出了一种基于高斯掩模和参考粒子图像互相关系数衰减的PTV测量深度。;完成了一种用于量化电动微流速度场的粒子成像系统的设计与验证。用PTV测量单个粒子的位移,以建立粒子电泳迁移率分布。通过颗粒迁移率分布定量证明涂层从通道壁脱附。将已校准了电泳迁移率的球体作为示踪剂颗粒引入到电解质系统中,以便对速度场进行定量测量。这些测量结果可以证明电动流的电场和速度场之间的相似性。 muPIV的深度解析测量能力可用于测量混合微通道系统中不同的电渗迁移率。通过将微球引入流场,进行了场放大样品堆叠的实验研究。提出了一种用于内部压力梯度随时间发展的一维润滑模型,并显示了与测量的良好一致性。作为muPIV在非均相电解质系统中的第二次应用,将聚苯乙烯球体以横向电导率梯度引入到T通道系统中的两个同流物流中,以证明溶液中带电粒子的新型分离。用FEMLAB进行的数值模拟证实了在具有横向电导率梯度的电动流中产生了横向电场。

著录项

  • 作者

    Devasenathipathy, Shankar.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 195 p.
  • 总页数 195
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号