首页> 外文学位 >Engineering matrix properties for stem cell culture and gene delivery.
【24h】

Engineering matrix properties for stem cell culture and gene delivery.

机译:干细胞培养和基因传递的工程基质特性。

获取原文
获取原文并翻译 | 示例

摘要

Tissue engineering aims to regenerate lost or damaged tissues and frequently combines therapeutic cells, biomaterial scaffolds, and therapeutic molecules in efforts to do so. One of the primary considerations in such therapies is to orchestrate the interactions between these components to regulate the desired cellular responses. This thesis focuses on tuning the proliferation of and exogenous protein expression from precursor cells, multipotent stem cells, and pluripotent stem cells with the mechanical and chemical properties of hydrogel-based synthetic extracellular matrices (ECMs). First, a synthetic stem cell niche with controlled stiffness and density of cell adhesion peptides was developed for spermatogonial stem cell (SSC) culture (Chapter 2). The synthetic stem cell niche allowed for the growth of SSCs in both two-dimensional (2D) and three-dimensional (3D) cultures, and the proliferation of SSCs was influenced by the density of cell adhesion ligands but not by substrate stiffness. Separately, the effects of substrate stiffness on non-viral gene delivery were evaluated for stem and precursor cells commonly used in tissue engineering or frequently present at gene delivery sites (Chapter 3). The cellular uptake and expression of non-viral genes for fibroblasts, bone marrow stromal cells (BMSCs), and myoblasts were regulated by the stiffness of the synthetic ECM. Interestingly, the effects of matrix stiffness on non-viral gene delivery were dependent on cell type, likely due to differences in cellular sensitivity to matrix mechanics. Finally, the results from the first two sections were used to build an implantable microvascular stamp consisting of cells transfected with plasmid DNA encoding vascular endothelial growth factor (VEGF) and a hydrogel matrix with tunable stiffness and permeability (Chapter 4). Overall, the results from this thesis may be useful in understanding the role of the extracellular microenvironment in tuning a variety of cellular activities. Furthermore, the information gained from these studies may be instrumental in the design and development of a novel biomaterial to significantly enhance the quality of tissue regeneration therapies.
机译:组织工程学旨在再生丢失或受损的组织,并经常将治疗细胞,生物材料支架和治疗分子结合在一起以实现这一目的。这种疗法的主要考虑因素之一是协调这些成分之间的相互作用以调节所需的细胞应答。本论文的重点是利用基于水凝胶的合成细胞外基质(ECM)的机械和化学特性来调节前体细胞,多能干细胞和多能干细胞的增殖和外源蛋白表达。首先,为精原干细胞(SSC)培养开发了具有受控的细胞粘附肽硬度和密度的合成干细胞生态位(第2章)。合成的干细胞生态位允许SSC在二维(2D)和三维(3D)培养中生长,并且SSC的增殖受细胞粘附配体的密度影响,但不受底物刚度的影响。分别评估了组织工程中常用的或经常存在于基因传递位点的干细胞和前体细胞对底物刚度对非病毒基因传递的影响(第3章)。成纤维细胞,骨髓基质细胞(BMSC)和成肌细胞的非病毒基因的细胞摄取和表达受合成ECM硬度的调节。有趣的是,基质刚度对非病毒基因传递的影响取决于细胞类型,这可能是由于细胞对基质力学的敏感性不同所致。最后,前两部分的结果被用于构建可植入的微血管标记,该标记由转染了编码血管内皮生长因子(VEGF)的质粒DNA的细胞和具有可调的刚度和渗透性的水凝胶基质组成(第4章)。总体而言,本论文的结果可能有助于理解细胞外微环境在调节各种细胞活动中的作用。此外,从这些研究中获得的信息可能有助于新型生物材料的设计和开发,以显着提高组织再生疗法的质量。

著录项

  • 作者

    Chu, Cathy.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 120 p.
  • 总页数 120
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号