首页> 外文学位 >Mechanisms of S-nitrosation and S-glutathiolation and expression and purification of human calbindin D(28k).
【24h】

Mechanisms of S-nitrosation and S-glutathiolation and expression and purification of human calbindin D(28k).

机译:S-亚硝化和S-戊二硫基化的机制以及人calbindin D(28k)的表达和纯化。

获取原文
获取原文并翻译 | 示例

摘要

How nitric oxide (NO) reacts with free thiols to form S-nitrosothiols (RSNOs) in vivo is a question of much debate. The effects of different chelators and added metals ions on NO and O2 consumption, and S-nitrosocysteine (CysNO) formation in cysteine solutions were studied using amperometric (NO and O2 electrodes) measurements and UV-vis absorption. The results support a free radical mechanism for CysNO formation that involves Cys· generation by reaction with ·NO2 at higher NO concentrations and with copper ions at lower NO concentrations.;The mechanism of recombinant human brain calbindin D28k (rHCaBP) S-nitrosation by CysNO or S-nitrosoglutathione (GSNO) was investigated in detail. First, an efficient rHCaBP expression and purification system was set up by subcloning the HCaBP gene into the pET15b vector and expressing the protein in BL21(DE3)pLysS host cells. A protein yield of >30 mg/L culture with >95% purity was obtained. UV-vis and circular dichroism absorption, intrinsic fluorescence and mass spectrometry measurements indicate that rHCaBP is S-nitrosated by CysNO. Of a total of five free cysteine residues 2.6 +/- 0.05 and 4.4 +/- 0.09 are S-nitrosated in Ca2+-loaded and Ca 2+-free rHCaBP, respectively, as determined by the Saville assay. Intrinsic protein fluorescence was demonstrated to be a sensitive probe of protein S-nitrosation due to efficient Forster energy transfer (R 0 ∼ 17 A) between tryptophan donors and RSNO acceptors.;Mass spectrometry and UV-vis absorption results support a mechanism for NO transfer from GSNO to rHCaBP that requires trace copper added as either Cu,Zn-superoxide dismutase (CuZnSOD) or CuSO4. CuZnSOD is an efficient catalyst of rHCaBP S-nitrosation via a mechanism involving reduction of its active-site CuII by a number of the thiols in rHCaBP, giving rise to Cys· radicals. The Cu IZnSOD formed catalyzes the reductive cleavage of GSNO to release NO, which reacts with the Cys· radical to yield the S-nitrosoprotein.;Since exposure of rHCaBP to either CysNO or GSNO also leads to rapid S-thiolation, the mechanism of protein S-glutathiolation was investigated in detail. rHCaBP, human CuZnSOD (HCuZnSOD), rabbit muscle glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and bovine serum albumin (BSA) were found to be S-glutathiolated in decomposed GSNO solutions. Fresh GSNO, reduced glutathione (GSH) or oxidized glutathione (GSSG) are not efficient S-glutathiolatiog agents for the proteins examined here. Based on analysis by mass spectrometry and UV-vis absorption, GSNO decomposition in the dark at room temperature yields glutathione disulfide S-oxide [GS(O)SG], glutathione disulfide S-dioxide (GSO2SG), and GSSG as products. A hydrolysis pathway yielding GSOH and nitroxyl HNO/NO - as intermediates is proposed based on inhibition of GSNO breakdown by dimedone, and nitroxyl scavenging by metmyoglobin. Cys111, Cys187, Cys149 and Cys34 were tentatively identified as the S-glutathiolation sites in HCuZnSOD, rHCaBP, GAPDH and BSA, respectively.
机译:一氧化氮(NO)在体内如何与游离硫醇反应形成S-亚硝基硫醇(RSNO)是一个有很多争议的问题。使用电流法(NO和O2电极)测量和紫外可见吸收,研究了不同螯合剂和添加的金属离子对NO和O2消耗以及半胱氨酸溶液中S-亚硝基半胱氨酸(CysNO)形成的影响。该结果支持CysNO形成的自由基机制,该机制涉及通过与较高NO浓度的·NO2和较低NO浓度的铜离子反应来生成Cys·。; CysNO重组人脑calbindin D28k(rHCaBP)S亚硝化的机制。或S-亚硝基谷胱甘肽(GSNO)进行了详细研究。首先,通过将HCaBP基因亚克隆到pET15b载体中并在BL21(DE3)pLysS宿主细胞中表达蛋白,建立了有效的rHCaBP表达和纯化系统。获得的蛋白产量> 30 mg / L,纯度> 95%。紫外可见和圆二色性吸收,固有荧光和质谱测量表明,rHCaBP被CysNO进行S-亚硝化。如通过Saville分析所确定的,在总共五个游离的半胱氨酸残基中,分别在载有Ca2 +的rHCaBP和不含Ca 2+的rHCaBP中分别进行了2.6 +/- 0.05和4.4 +/- 0.09的S-亚硝化。由于色氨酸供体和RSNO受体之间有效的Forster能量转移(R 0〜17 A),内在蛋白质荧光被证明是蛋白质S亚硝化的灵敏探针。质谱和紫外可见吸收结果支持了NO转移的机制。从GSNO到rHCaBP,需要添加痕量铜作为Cu,Zn超氧化物歧化酶(CuZnSOD)或CuSO4。 CuZnSOD是一种有效的rHCaBP S亚硝化催化剂,其机制涉及rHCaBP中的许多硫醇还原其活性位点CuII,从而产生Cys·自由基。形成的Cu IZnSOD催化GSNO的还原裂解,释放出NO,NO与Cys·自由基反应生成S-亚硝基蛋白。由于rHCaBP暴露于CysNO或GSNO也导致快速的S-硫代化,因此蛋白质的机理详细研究了S-谷氨酰胺化。发现rHCaBP,人CuZnSOD(HCuZnSOD),兔肌肉3-磷酸甘油醛脱氢酶(GAPDH)和牛血清白蛋白(BSA)在分解的GSNO溶液中被S-谷氨硫醇化。新鲜的GSNO,还原型谷胱甘肽(GSH)或氧化型谷胱甘肽(GSSG)对于此处检测的蛋白质而言不是有效的S-谷氨酰胺化剂。基于质谱分析和紫外可见吸收,室温下GSNO在黑暗中分解产生谷胱甘肽二硫化物S-氧化物[GS(O)SG],谷胱甘肽二硫化物S-二氧化物(GSO2SG)和GSSG。提出了基于二甲酮抑制GSNO分解和通过肌红蛋白清除硝基氧基的水解途径,以GSOH和硝酰基HNO / NO-为中间体。暂定将Cys111,Cys187,Cys149和Cys34分别定为HCuZnSOD,rHCaBP,GAPDH和BSA中的S-谷氨酰胺化位点。

著录项

  • 作者

    Tao, Limei.;

  • 作者单位

    Concordia University (Canada).;

  • 授予单位 Concordia University (Canada).;
  • 学科 Chemistry Biochemistry.;Biology Molecular.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 175 p.
  • 总页数 175
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号