首页> 外文学位 >Energetic cost and balance control mechanisms in human locomotion
【24h】

Energetic cost and balance control mechanisms in human locomotion

机译:人体运动中的能量成本和平衡控制机制

获取原文
获取原文并翻译 | 示例

摘要

The first three chapters of my dissertation focuses on human running emphasizing step width and arm swing as primary balance control strategies. The fourth chapter tests the hypothesis that arm swing during human walking is primarily passive.;In my first study, I found that when subjects ran (3.0 m/s) at step widths other than their preferred narrow step width or without arm swing, both net metabolic power demand and step width variability (indicator of lateral balance) increased. I interpret greater step width variability as a decrease in lateral balance. My findings suggest that humans prefer to run with a narrow step width and swing their arms so as to minimize energetic cost and improve lateral balance.;In my second study, I found that when running (3.0 m/s) with or without arm swing, external lateral stabilization (LS) results in similar reductions in net metabolic power (∼2.0%) and step width variability (∼12.0%). I infer that the 2% reduction in the net energetic cost of running with external LS reflects the energetic cost of maintaining lateral balance. Furthermore, while eliminating arm swing increased the energetic cost of running overall (∼8%), arm swing does not appear to assist with lateral balance.;In my third study, I found that compared to non-amputees, sprinters with trans-tibial amputations ran with greater step width and medio-lateral (M-L) foot placement variability, indicating that they have greater challenges with maintaining lateral balance. At faster running speeds up to maximum sprint speed, variability of both step width and M-L foot placement increased in all sprinters, indicating progressive decreases in lateral balance.;In my fourth study, I quantified arm swing amplitudes and shoulder muscle activity while subjects walked with 1) their biological arms and 2) with free-swinging, anthropomorphic, passive mechanical arms. I found that passive mechanical arm swing resembled the behavior of a horizontally driven pendulum, reaching its largest amplitude as step frequency approached the arm's natural frequency; however, the swinging amplitudes of the passive mechanical arms was much less than the swinging amplitudes of the biological arms. My findings demonstrate that arm swing during human walking is a hybrid system comprising active muscular actuation and passive pendulum dynamics.
机译:本文的前三章着重于人类跑步,强调步幅和手臂摆动是主要的平衡控制策略。第四章检验了以下假设:在人类步行过程中手臂摆动主要是被动的。在我的第一项研究中,我发现当受试者以不同于他们喜欢的较窄步幅或没有手臂摇摆的步幅跑(3.0 m / s)时,两者净代谢能力需求和步幅变异性(横向平衡指标)增加。我将更大的步幅可变性解释为横向平衡的减少。我的发现表明,人类更喜欢以较窄的步幅跑步并摆动手臂,以最大程度地降低精力消耗并改善横向平衡。在我的第二项研究中,我发现在跑步时(3.0 m / s)有或没有手臂摆动,外部横向稳定度(LS)会导致净新陈代谢力(〜2.0%)和步幅变异性(〜12.0%)的相似降低。我推断,使用外部LS进行跑步的能源净成本减少2%,反映了保持横向平衡的能源成本。此外,虽然消除了手臂摆动会增加整体跑步的能量消耗(约8%),但手臂摆动似乎并不能辅助横向平衡。在我的第三项研究中,我发现与非截肢者相比,短跑运动员具有胫胫骨截肢的步幅较大,并且中外侧(ML)脚的位置变化较大,这表明它们在保持侧向平衡方面面临更大的挑战。在达到最高冲刺速度的较快跑步速度下,所有短跑运动员的步幅宽度和ML脚放置的可变性均增加,表明横向平衡逐渐降低。;在我的第四项研究中,我量化了受试者走路时手臂的摆动幅度和肩部肌肉活动1)它们的生物臂和2)具有自由摆动,拟人化,被动的机械臂。我发现被动机械手臂的摆动类似于水平驱动摆的行为,随着步频接近手臂的固有频率而达到最大振幅。然而,被动机械臂的摆动幅度远小于生物臂的摆动幅度。我的发现表明,人类行走过程中的手臂摆动是一种混合系统,包括主动肌肉致动和被动摆运动。

著录项

  • 作者

    Arellano, Christopher J.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Biomechanics.;Physiology.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 161 p.
  • 总页数 161
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号