首页> 外文学位 >Computational methods for bacterial characterization and bacteria-host/environment interaction analyses.
【24h】

Computational methods for bacterial characterization and bacteria-host/environment interaction analyses.

机译:用于细菌表征和细菌-宿主/环境相互作用分析的计算方法。

获取原文
获取原文并翻译 | 示例

摘要

As the largest domain of all living organisms on earth, bacteria are estimated to have more than five nonillion(1030) individuals worldwide [1], which are far more than previous estimations of the total number of bacteria [2]. These single-cell organisms can be found everywhere, e.g., deep sea, hot springs, human gut, and even in radioactive waste [3]. Due to close connections between bacteria and human life, we cannot live without them and actually benefit from the microorganisms in many cases, e.g. food production, human health [4], environmental sciences [5], and chemical industry [6, 7]. On the other hand, pathogenic bacteria are one of the most serious threats to human life. For example, tuberculosis, the most common fatal bacterial disease, kills about 2 million people every year [8]. Since 1676, when Antonie van Leeuwenhoek first observed bacteria, scientists have never stopped exploring the micro-world. The task of identification and classification of bacteria remains challenging because bacteria are invisible to naked eyes and cannot be easily differentiated morphologically. During the past two decades, DNA sequencing technologies have become a powerful tool for scientists to take up the challenge.;In 1995, when John Craig Venter just started to sequence the first bacterial genome -- Haemophilus influenza [9], DNA sequencing was extremely difficult and time consuming. The common thought at the time was that it would be sufficient to build a gene pool of the whole microbial community from just a few dozen representative genomes. Today, thanks to new sequencing technologies, more than 1600 microbial whole genome sequences have been released and many more bacterial genome-sequencing projects are ongoing [10]. With the accumulation of bacterial genomic data, the focus of microbial genomics (study of genomes of microorganisms including archaea, bacteria and fungi) is shifting from single genome to pan-genome (gene pool of a particular species) and meta-genome (environmental gene/species pool). However, the explosion of data has not answered all the questions of researchers in this field. It becomes evident that these data just revealed a tip of the iceberg for the bacterial world. In-depth analysis of these data is needed to help better understand the genome diversity and dynamics of bacteria, interactions between bacteria and their hosts/environments, and the pathogenicity of pathogens. Meanwhile, the unprecedented amount of genome data also poses major challenges for computational analysis, which is an essential tool for microbial genomics. In fact, computational methods for massive genomic sequence analysis have become a bottleneck of microbial genomics.;In this dissertation, we will focus on computational methods for discovering the interactions between bacteria and hosts/environments and bacterial characterization (i.e. identification and classification), based on sequencing data with consideration of bacteria's hosts and environments. While this topic has been brought up in recent publications [11-16], no in-depth review has been presented. Bacterial identification through detecting variations of genome sequences across different species/genus is a very important and essential step of analyzing genomic data, especially for metagenomic data. Thus, in chapter 2, we first review existing computational tools and their limitations for bacterial identification. As bacteria evolve rapidly in response to the environments, bacterial adaptations to different environments/hosts will reflect in their genome sequences. Many bacteria, even belonging to the same species, still show extensive genomic plasticity and diverse pathogenicity. For example, three different E. coli strains, laboratory strains E. coli MG1655, enterohemorrhagic E. coli EDL933, and an uropathogenic strain E. coli CFT073-), share only 39.2% common genes [17].Thus, chapter 3 of this dissertation, we will assess the practical computational methods for detecting the sequence variations of bacteria in different environments for a given species. In chapter 4, we will dissect the evolutionary dynamics of bacterial virulence and review the methods for identification of genetic markers in bacterial DNA sequences that are associated with a disease or host. In chapter 5, based on our observations and works in chapter 4, we predict some novel effectors for those known pathogens. The last chapter is the summary of this dissertation.
机译:作为地球上所有活生物体中最大的领域,据估计细菌在全球范围内有超过五百万(1030)个个体[1],远远超过了以前对细菌总数的估计[2]。这些单细胞生物可以在任何地方找到,例如深海,温泉,人体肠道,甚至是放射性废物[3]。由于细菌与人类生活之间的紧密联系,我们无法没有它们就无法生存,在许多情况下,例如在许多情况下,我们实际上会从微生物中受益。食品生产,人类健康[4],环境科学[5]和化学工业[6,7]。另一方面,致病细菌是对人类生命的最严重威胁之一。例如,结核病是最常见的致命细菌性疾病,每年造成约200万人死亡[8]。自1676年Antonie van Leeuwenhoek首次观察到细菌以来,科学家就从未停止过探索微观世界。细菌的鉴定和分类任务仍然具有挑战性,因为细菌是肉眼看不见的,而且形态上不易区分。在过去的二十年中,DNA测序技术已经成为科学家应对挑战的有力工具。1995年,当约翰·克雷格·文特(John Craig Venter)才开始对第一个细菌基因组进行测序-嗜血杆菌流感[9]时,DNA测序的应用极为广泛。困难且耗时。当时的普遍想法是,仅从几十个代表性基因组建立整个微生物群落的基因库就足够了。今天,由于有了新的测序技术,已经发布了1600多种微生物全基因组序列,并且正在进行更多的细菌基因组测序项目[10]。随着细菌基因组数据的积累,微生物基因组学(包括古细菌,细菌和真菌在内的微生物基因组研究)的重点正从单一基因组转向全基因组(特定物种的基因库)和元基因组(环境基因)。 /物种池)。但是,数据的爆炸并没有回答该领域研究人员的所有问题。显然,这些数据揭示了细菌世界的冰山一角。需要对这些数据进行深入分析,以帮助更好地了解细菌的基因组多样性和动态,细菌及其宿主/环境之间的相互作用以及病原体的致病性。同时,前所未有的基因组数据量也给计算分析带来了重大挑战,这是微生物基因组学的重要工具。实际上,大规模基因组序列分析的计算方法已经成为微生物基因组学的瓶颈。本文将重点研究发现细菌与宿主/环境之间相互作用以及细菌表征(即鉴定和分类)的计算方法。考虑细菌宿主和环境对数据进行测序。尽管在最近的出版物[11-16]中已经提到了这个话题,但是没有提出深入的评论。通过检测不同物种/属间基因组序列的变异来进行细菌鉴定是分析基因组数据(尤其是宏基因组数据)的非常重要且必不可少的步骤。因此,在第二章中,我们首先回顾了现有的计算工具及其在细菌鉴定中的局限性。随着细菌对环境的响应迅速发展,细菌对不同环境/宿主的适应性将反映在其基因组序列中。许多细菌,甚至属于同一物种,仍然显示出广泛的基因组可塑性和多种致病性。例如,三种不同的大肠杆菌菌株,实验室菌株大肠杆菌MG1655,肠出血性大肠杆菌EDL933和泌尿致病性菌株大肠杆菌CFT073-)共享39.2%的共同基因[17]。因此,本章第3章论文中,我们将评估用于检测给定物种在不同环境中细菌序列变异的实用计算方法。在第4章中,我们将剖析细菌毒力的进化动力学,并回顾鉴定与疾病或宿主相关的细菌DNA序列中遗传标记的方法。在第5章中,基于我们在第4章中的观察和工作,我们预测了那些已知病原体的新型效应子。第四章是对本文的总结。

著录项

  • 作者

    Zhang, Chao.;

  • 作者单位

    University of Missouri - Columbia.;

  • 授予单位 University of Missouri - Columbia.;
  • 学科 Computer engineering.;Microbiology.;Bioinformatics.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 125 p.
  • 总页数 125
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号