首页> 外文学位 >Recrystallization mechanism for two nickel based superalloys.
【24h】

Recrystallization mechanism for two nickel based superalloys.

机译:两种镍基高温合金的再结晶机理。

获取原文
获取原文并翻译 | 示例

摘要

The demand for enhanced structural performances materials is growing every year and technological advancements in the sector of aerospace or nuclear are in constant need for materials with good mechanical properties. The alloys commonly used for these features are Nickel-based superalloys as they exhibit high strength and good resistance to corrosion and oxidation. To improve their mechanical behavior, recent studies have focused on grain refinement methods. Among these methods to obtain the finest grain size distribution, one is particularly advantageous for it low cost and feasibility: severe plastic deformation. In this study, the deformation mechanism of two low stacking fault energy nickel-based alloys are investigated. The first alloy, Monel400, it is a single FCC phase material. The second one is Inconel 625 which has a two-phase microstructure. During hot deformation, the gamma' precipitate may be present in the gamma phase and above a certain solvus temperature, the gamma phase exists in the material. The restoration mechanism for FCC crystals is well known, and particular attention was given to the recrystallization response and flow behavior of Inconel 625 for sub-solvus temperatures. In the introduction a brief review of the current state of literature on the deformation response of Nickel-based superalloys is provided. Samples were compressed under various temperatures and strain rate conditions using a Gleeble simulator and flow stress curves were extracted. To characterize both qualitatively and quantitatively the deformation, samples were then analyzed using standard microscopy, scanning electron microscopy and electron backscatter diffraction analysis. The resulting images and maps combined with flow stress curves have lead to the formulation of constitutive models of the recrystallization process using three parameters, the stress, grain size and recrystallized volume fraction. The data shows that deformation is first accommodated through dynamic recovery with the formation of sub-grains structures. Then, after the experimental strain reaches a critical value, recrystallized grains form within the microstructure. EBSD analysis show a trend for new recrystallized grain to grow under certain conditions. Results show a trend of increasing the grain size with increasing the strain and decreasing the Zener-Hollomon parameter and an increasing recrystallized volume fraction with increasing the strain and Zener-Hollomon parameter.
机译:增强结构性能的材料的需求每年都在增长,航空航天或核能领域的技术进步一直需要具有良好机械性能的材料。通常用于这些特征的合金是镍基高温合金,因为它们显示出高强度以及良好的耐腐蚀和抗氧化性。为了改善其机械性能,最近的研究集中在晶粒细化方法上。在获得最佳晶粒尺寸分布的这些方法中,一种方法特别便宜,因为它具有低成本和可行性:严重的塑性变形。在这项研究中,研究了两种低堆垛层错能镍基合金的变形机理。第一种合金是Monel400,它是单一的FCC相材料。第二个是具有两相微观结构的Inconel 625。在热变形期间,γ′沉淀可能存在于γ相中,并且在一定的固溶温度以上时,γ相存在于材料中。 FCC晶体的修复机制是众所周知的,并且特别注意了Inconel 625在次溶剂温度下的重结晶响应和流动行为。在引言中,简要回顾了有关镍基高温合金变形响应的文献。使用Gleeble仿真器在各种温度和应变速率条件下压缩样品,并提取流动应力曲线。为了定性和定量地表征变形,然后使用标准显微镜,扫描电子显微镜和电子背散射衍射分析对样品进行分析。所得到的图像和图谱与流动应力曲线相结合,导致使用应力,晶粒尺寸和再结晶体积分数这三个参数来制定再结晶过程的本构模型。数据表明,首先通过动态恢复来适应变形,并形成亚晶粒结构。然后,在实验应变达到临界值后,在微结构内形成再结晶晶粒。 EBSD分析表明,在某些条件下,新的重结晶晶粒会生长。结果表明,随着应变的增加和Zener-Hollomon参数的减小,晶粒尺寸增大;随着应变和Zener-Hollomon参数的增加,重结晶体积分数增大。

著录项

  • 作者

    Balandra, Ombeline.;

  • 作者单位

    Illinois Institute of Technology.;

  • 授予单位 Illinois Institute of Technology.;
  • 学科 Materials science.;Aerospace engineering.
  • 学位 M.S.
  • 年度 2016
  • 页码 273 p.
  • 总页数 273
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号