首页> 外文学位 >Microstructural indicators of transition mechanisms in time-dependent fatigue crack growth in nickel base superalloys.
【24h】

Microstructural indicators of transition mechanisms in time-dependent fatigue crack growth in nickel base superalloys.

机译:镍基高温合金中随时间变化的疲劳裂纹扩展的过渡机制的微观结构指标。

获取原文
获取原文并翻译 | 示例

摘要

Gas turbine engines are an important part of power generation in modern society, especially in the field of aerospace. Aerospace engines are design to last approximately 30 years and the engine components must be designed to survive for the life of the engine or to be replaced at regular intervals to ensure consumer safety. Fatigue crack growth analysis is a vital component of design for an aerospace component. Crack growth modeling and design methods date back to an origin around 1950 with a high rate of accuracy. The new generation of aerospace engines is designed to be efficient as possible and require higher operating temperatures than ever seen before in previous generations. These higher temperatures place more stringent requirements on the material crack growth performance under creep and time dependent conditions. Typically the types of components which are subject to these requirements are rotating disk components which are made from advanced materials such as nickel base superalloys.;Traditionally crack growth models have looked at high temperature crack growth purely as a function of temperature and assumed that all crack growth was either controlled by a cycle dependent or time dependent mechanism. This new analysis is trying to evaluate the transition between cycle-dependent and time-dependent mechanism and the microstructural markers that characterize this transitional behavior. The physical indications include both the fracture surface morphology as well as the shape of the crack front. The research will evaluate whether crack tunneling occurs and whether it consistently predicts a transition from cycle-dependent crack growth to time-dependent crack growth. The study is part of a larger research program trying to include the effects of geometry, mission profile and environmental effects, in addition to temperature effects, as a part of the overall crack growth system. The outcome will provide evidence for various transition types and correlate those physical attributes back to the material mechanisms to improve predictive modeling capability.
机译:燃气涡轮发动机是现代社会,尤其是在航空航天领域中发电的重要组成部分。航空发动机的设计使用寿命约为30年,并且发动机部件的设计必须能够在发动机的使用寿命内保持使用寿命,或者必须定期更换以确保消费者安全。疲劳裂纹扩展分析是航空航天组件设计的重要组成部分。裂纹扩展建模和设计方法可以追溯到1950年,并且具有很高的准确性。新一代航空发动机设计为尽可能高效,并且需要比前几代人更高的工作温度。这些较高的温度对蠕变和时间相关条件下的材料裂纹扩展性能提出了更严格的要求。通常,要满足这些要求的组件类型是由先进材料(例如镍基高温合金)制成的转盘组件。传统上,裂纹扩展模型仅将高温裂纹扩展视为温度的函数,并假设所有裂纹生长受周期依赖性或时间依赖性机制控制。这项新的分析试图评估周期依赖和时间依赖的机制与表征这种过渡行为的微观结构标志之间的过渡。物理迹象包括断裂表面形态以及裂纹前沿的形状。该研究将评估是否发生裂纹隧穿,以及是否始终如一地预测从周期相关的裂纹扩展到时间相关的裂纹增长的过渡。该研究是一个较大研究计划的一部分,该研究计划除温度影响外,还包括几何形状,任务轮廓和环境影响,作为整个裂纹扩展系统的一部分。结果将提供各种过渡类型的证据,并将那些物理属性与物质机制相关联,以提高预测建模能力。

著录项

  • 作者

    Heeter, Ann E.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Materials Science.
  • 学位 M.S.M.S.E.
  • 年度 2014
  • 页码 117 p.
  • 总页数 117
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号