首页> 外文学位 >Comparison of material properties and laser device characteristics of indium phosphide-based quantum confined structures.
【24h】

Comparison of material properties and laser device characteristics of indium phosphide-based quantum confined structures.

机译:基于磷化铟的量子约束结构的材料性能和激光器件特性的比较。

获取原文
获取原文并翻译 | 示例

摘要

Self-assembled semiconductor quantum dots (QDs) constitute a class of nanoscale materials which provide fundamental advantages compared to the dominating 2D quantum-well (QW) structures in photonic device applications. Since the first demonstration in early 80s, the fundamental optical and electrical properties of InGaAs/GaAs QD structures have been relatively well studied. The realization of QD lasers well beyond 1.3 mum on GaAs substrate remains a great challenge. Recent attempts to extend the technology of self-assembled growth of QDs on InP substrate has led to the development of InAs-based quantum-dot/dash (QD/Dash) that gives the ground state transition spans over several bands of optical telecommunication windows between 1.4-1.7 mum wavelengths. Due to quasi-three-dimensional carrier confinement and intrinsic properties, Qdash enables several interesting laser diode characteristics such as potentially improved temperature insensitivity, optical feedback resistance, and wideband amplification.;Although high performance devices such as lasers and optical amplifier have been fabricated using these material systems, fundamental optical and electrical properties of the InAs/InP Qdash and Qdash-in-well structures have not been systematically studied. In this dissertation, one of our objectives is to perform different intermixing technologies on GaAs- and InP-based quantum nanostructures. Various spectroscopy techniques have been applied to study the effect of InAs/InP quantum dash-in-well active gain medium of semiconductor lasers on the optical beam quality and coupling efficiency. Various electrical and optical techniques are performed at the device level to gain physical insights of the Qdash structures. The far field profiles of QD, QDash and QW lasers have also been studied. We found that the nature of carrier diffusion of Qdash and QW lead to the different degrees of filamentation and QD has better optical beam quality due to the three dimensional confinement of carriers.;The orientation dependent emission of quantum dash-in-well structure, TE and TM polarization degree, have also been investigated. In our study, we found that polarization insensitive gain of InAs/InGaAs Qdash structure can be achieved utilizing the proper stacking number of Qdash layer and the angle of the Qdash alignment.
机译:自组装半导体量子点(QD)构成了一类纳米级材料,与光子器件应用中的主导2D量子阱(QW)结构相比,它们提供了基本优势。自80年代初首次演示以来,已经对InGaAs / GaAs QD结构的基本光学和电学性质进行了比较深入的研究。在GaAs衬底上实现远超过1.3微米的QD激光器仍然是一个巨大的挑战。最近扩展QP在InP衬底上自组装生长技术的尝试导致了基于InAs的量子点/破折号(QD / Dash)的发展,该量子点/破折号使基态过渡跨过了两个1.4-1.7毫米波长。由于准三维载流子限制和固有特性,Qdash启用了一些有趣的激光二极管特性,例如潜在地改善了温度不敏感度,光反馈电阻和宽带放大率;尽管使用诸如激光和光放大器的高性能器件制造而成这些材料系统,InAs / InP Qdash和Qdash阱结构的基本光学和电学特性尚未得到系统的研究。本文的目的之一是在GaAs和InP基量子纳米结构上进行不同的混合技术。各种光谱技术已被用于研究半导体激光器的InAs / InP量子点入式有源增益介质对光束质量和耦合效率的影响。在设备级别执行了各种电气和光学技术,以获取Qdash结构的物理见解。还研究了QD,QDash和QW激光器的远场轮廓。我们发现,由于载流子的三维约束,Qdash和QW的载流子扩散性质导致了不同程度的丝状化,并且QD具有更好的光束质量。;量子阱结构TE的取向依赖性发射和TM极化度,也已被研究。在我们的研究中,我们发现利用适当的Qdash层堆叠数和Qdash对准角度可以实现InAs / InGaAs Qdash结构的偏振不敏感增益。

著录项

  • 作者

    Ding, Yun-Hsiang.;

  • 作者单位

    Lehigh University.;

  • 授予单位 Lehigh University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 150 p.
  • 总页数 150
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号