首页> 外文学位 >The novel material: Organosilanes crosslinked gelatin its characteristics and potentials for tissue engineering applications.
【24h】

The novel material: Organosilanes crosslinked gelatin its characteristics and potentials for tissue engineering applications.

机译:新型材料:有机硅烷交联明胶,其特性和在组织工程应用中的潜力。

获取原文
获取原文并翻译 | 示例

摘要

A typical tissue engineering approach involves combining three elements: a tissue scaffold, living cells, and cell signaling molecules, to regenerate a damaged tissue or organ. Tissue scaffold is the emerging key technology for tissue engineering applications. In this study, silane (glycidoxypropyltrimethoxy silane, GPMS) containing an epoxide group has been employed to crosslink gelatin and improve its deficient properties. However, GPMS modified gelatin has lower elasticity and hydrophobic structure due to its dense structure. These drawbacks were solved with the use of fructose as a spacer and another silane containing amine groups (aminopropyltriethoxysilane, APES) for the formation of longer bridge between two silanes. Furthermore, an "optimum" 2D or 3D silane-crosslinked system showed more wettable IPN structure due to many organic functional groups on its surface which can support cell attachment, migration and proliferation and allow interactions with biomolecules such as growth factors, providing lower toxicity. When silane modified gelatin(GS) was introduced to hydroxyapatite(HA) as a coating material, it yielded greater compressive strength and optimized the release of growth factors and stimulated osteogenic differentiation in vivo and in vitro. Also, GS, working as a DBM carrier, significantly enhanced the characteristics of DBM with adjustable load resistance, while maintaining the innate osteogenic properties of DBM. GS revealed to be a good candidate for osteoconductive and osteoinductive bone grafts, when combined with biomimetic material.
机译:典型的组织工程方法涉及结合三个要素:组织支架,活细胞和细胞信号分子,以再生受损的组织或器官。组织支架是用于组织工程应用的新兴关键技术。在这项研究中,含有环氧基的硅烷(环氧丙氧基丙基三甲氧基硅烷,GPMS)已被用于交联明胶并改善其不足的性质。但是,GPMS改性明胶由于其致密结构而具有较低的弹性和疏水性结构。通过使用果糖作为间隔基和使用另一个含有胺基的硅烷(氨基丙基三乙氧基硅烷,APES)解决了这些缺点,从而在两个硅烷之间形成了更长的桥。此外,“最佳” 2D或3D硅烷交联系统由于其表面上的许多有机官能团可支持细胞附着,迁移和增殖,并允许与生物分子(例如生长因子)相互作用而显示出更高的可湿性IPN结构,从而降低了毒性。当将硅烷改性的明胶(GS)引入羟基磷灰石(HA)中作为涂料时,它具有更高的抗压强度并优化了生长因子的释放,并在体内和体外刺激了成骨分化。此外,GS作为DBM的载体,通过可调节的负载阻力显着增强了DBM的特性,同时保持了DBM的固有成骨特性。当与仿生材料结合使用时,GS显示出是骨传导性和骨诱导性骨移植的良好候选者。

著录项

  • 作者

    Kwon, Bosun.;

  • 作者单位

    University of Southern California.;

  • 授予单位 University of Southern California.;
  • 学科 Engineering Biomedical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 209 p.
  • 总页数 209
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号