首页> 外文学位 >Investigating the potential of electrospun gelatin and collagen scaffolds for tissue engineering applications.
【24h】

Investigating the potential of electrospun gelatin and collagen scaffolds for tissue engineering applications.

机译:研究电纺明胶和胶原蛋白支架在组织工程应用中的潜力。

获取原文
获取原文并翻译 | 示例

摘要

Electrospinning provides an avenue to explore tissue engineering with the ability to produce nano- and micro-sized fibers in a non-woven construct with properties ideal for a tissue engineered scaffold including: small diameter fibers, which create a large surface to volume ratio, and an interconnected porous network that enables cell migration, good mechanical integrity and a three-dimensional structure. A tissue engineered scaffold also must be biocompatible, biodegradable, non-toxic and able to be sterilized. All of these requirements can be satisfied by choosing an appropriate polymer and solvent system for electrospinning.;The main objective of this research is to create a non-toxic, flat, bone tissue engineered scaffold to place into a non-immune compromised mouse. The current bone tissue repair and replacement methodologies include using metal and ceramic replacements or autologous and autogenous bone grafts. Each of these has its own set of disadvantages. Autologous grafts are bone harvested in one location in a patient and used in another location. This procedure is expensive, often results in pain and infection at the replacement site, and the actual harvesting procedure can cause problems for the patient. Autogenous grafts are bone harvested in one patient and used in another patient. The shortcomings include low donor availability and the possibility of rejection of the implant. The other options include using metal and ceramics to create replacement bone. However, metals provide good mechanical stability but can fail due to infection and also have poor integration into natural tissue. Ceramics, on the other hand, are brittle and have very low tensile strength.;The natural extracellular matrix (ECM) of bone consists mainly of collagen type I. Electrospun fiber diameters closely resemble those of the natural ECM of bone. Thus, electrospinning a natural polymer like collagen type I for bone tissue engineering could make sense. Applications for these electrospun tissue engineered scaffolds include flat bone repair (skull, scapula, pelvis and sternum) or replacement applications.;In order to meet the main objective, several critical milestones must be completed. The first is to develop an electrospinning system that uses less toxic solvents. Until recently, fluorinated solvents have been used to electrospin collagen and gelatin. These fluorinated solvents are cytotoxic and, even with vacuum drying and extensive washing, these toxic solvents may remain in the electrospun scaffolds. A solvent system using less toxic, non-fluorinated solvents to electrospin collagen and gelatin is necessary.;Due to the high expense of collagen type I, gelatin is being used as a material substitute since gelatin is simply denatured collagen. Gelatin, like collagen, will dissolve in aqueous media unless it is crosslinked. The chemical generally used for crosslinking gelatin is glutaraldehyde, which is considered toxic. Therefore, the second objective is to find a less toxic method to crosslink the electrospun gelatin while maintaining the fiber morphology. The new crosslinking methods must also prove to be biocompatible in vivo.;Another important objective is to investigate cell penetration as a function of fiber size, which is directly proportional to pore size. The final objective involves growing bone cells such as MG63 (osteoblast-like) in the electrospun scaffolds and compare to two-dimensional culture.
机译:电纺丝提供了探索组织工程的途径,能够在非织造结构中生产纳米和微米尺寸的纤维,其特性非常适合组织工程支架,包括:小直径纤维,可产生较大的表面体积比;以及相互连接的多孔网络,可实现细胞迁移,良好的机械完整性和三维结构。组织工程支架还必须是生物相容的,可生物降解的,无毒的并且能够被灭菌。通过选择合适的静电纺丝聚合物和溶剂系统可以满足所有这些要求。这项研究的主要目的是创建一种无毒,扁平的骨组织工程支架,以放置到非免疫受损的小鼠中。当前的骨组织修复和置换方法包括使用金属和陶瓷置换或自体和自体骨移植物。这些中的每一个都有其自身的缺点。自体移植物是在患者的一个位置收获的骨,并在另一位置使用。该过程是昂贵的,经常导致替换部位的疼痛和感染,并且实际的收获过程可能给患者带来麻烦。自体移植物在一个患者中收获骨,并在另一患者中使用。缺点包括供体可用性低和拒绝植入物的可能性。其他选项包括使用金属和陶瓷来创建替代骨骼。但是,金属提供了良好的机械稳定性,但由于感染而可能失效,并且与天然组织的融合也很差。另一方面,陶瓷是脆性的,并且抗张强度很低。骨骼的天然细胞外基质(ECM)主要由I型胶原组成。电纺纤维的直径与骨骼的天然ECM极为相似。因此,对骨组织工程静电纺丝天然聚合物(如I型胶原)可能很有意义。这些电纺组织工程支架的应用包括扁平骨修复(头骨,肩cap骨,骨盆和胸骨)或置换应用。为了达到主要目的,必须完成几个关键的里程碑。首先是开发使用毒性较小的溶剂的静电纺丝系统。直到最近,氟化溶剂仍被用于静电纺丝胶原蛋白和明胶。这些氟化溶剂具有细胞毒性,即使进行真空干燥和大量洗涤,这些有毒溶剂也可能残留在电纺支架中。需要使用毒性较小的非氟化溶剂静电纺丝胶原蛋白和明胶的溶剂系统。由于I型胶原蛋白的高昂费用,明胶被用作材料替代品,因为明胶只是变性的胶原蛋白。明胶像胶原一样,除非交联,否则会溶解在水性介质中。通常用于交联明胶的化学物质是戊二醛,被认为是有毒的。因此,第二个目的是找到一种毒性较小的方法来使电纺明胶交联,同时保持纤维形态。新的交联方法还必须在体内具有生物相容性。另一个重要目标是研究细胞渗透率与纤维尺寸的关系,纤维渗透率与孔径成正比。最终目标涉及在电纺支架中生长诸如MG63(成骨细胞样)之类的骨细胞,并将其与二维培养进行比较。

著录项

  • 作者

    Sisson, Kristin M.;

  • 作者单位

    University of Delaware.;

  • 授予单位 University of Delaware.;
  • 学科 Engineering Biomedical.;Engineering Materials Science.
  • 学位 D.Eng.
  • 年度 2009
  • 页码 132 p.
  • 总页数 132
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号