首页> 外文学位 >Assessment of parametric and model uncertainty in groundwater modeling.
【24h】

Assessment of parametric and model uncertainty in groundwater modeling.

机译:地下水建模中参数和模型不确定性的评估。

获取原文
获取原文并翻译 | 示例

摘要

Groundwater systems are open and complex, rendering them prone to multiple conceptual interpretations and mathematical descriptions. When multiple models are acceptable based on available knowledge and data, model uncertainty arises. One way to assess the model uncertainty is postulating several alternative hydrologic models for a site and using model selection criteria to (1) rank these models, (2) eliminate some of them, and/or (3) weight and average predictions statistics generated by multiple models based on their model probabilities. This multimodel analysis has led to some debate among hydrogeologists about the merits and demerits of common model selection criteria such as AIC, AICc, BIC, and KIC. This dissertation contributes to the discussion by comparing the abilities of the two common Bayesian criteria (BIC and KIC) theoretically and numerically. The comparison results indicate that, using MCMC results as a reference, KIC yields more accurate approximations of model probability than does BIC. Although KIC reduces asymptotically to BIC, KIC provides consistently more reliable indications of model quality for a range of sample sizes.;In the multimodel analysis, the model averaging predictive uncertainty is a weighted average of predictive uncertainties of individual models. So it is important to properly quantify individual model's predictive uncertainty. Confidence intervals based on regression theories and credible intervals based on Bayesian theories are conceptually different ways to quantify predictive uncertainties, and both are widely used in groundwater modeling. This dissertation explores their differences and similarities theoretically and numerically. The comparison results indicate that given Gaussian distributed observation errors, for linear or linearized nonlinear models, linear confidence and credible intervals are numerically identical when consistent prior parameter information is used. For nonlinear models, nonlinear confidence and credible intervals can be numerically identical if parameter confidence and credible regions based on approximate likelihood method are used and intrinsic model nonlinearity is small; but they differ in practice due to numerical difficulties in calculating both confidence and credible intervals. Model error is a more vital issue than differences between confidence and credible intervals for individual models, suggesting the importance of considering alternative models.;Model calibration results are the basis for the model selection criteria to discriminate between models. However, how to incorporate calibration data errors into the calibration process is an unsettled problem. It has been seen that due to the improper use of the error probability structure in the calibration, the model selection criteria lead to an unrealistic situation in which one model receives overwhelmingly high averaging weight (even 100%), which cannot be justified by available data and knowledge. This dissertation finds that the errors reflected in the calibration should include two parts, measurement errors and model errors. To consider the probability structure of the total errors, I propose an iterative calibration method with two stages of parameter estimation. The multimodel analysis based on the estimation results leads to more reasonable averaging weights and better averaging predictive performance, compared to those with considering only measurement errors.;Traditionally, data-worth analyses have relied on a single conceptual-mathematical model with prescribed parameters. Yet this renders model predictions prone to statistical bias and underestimation of uncertainty and thus affects the groundwater management decision. This dissertation proposes a multimodel approach to optimum data-worth analyses that is based on model averaging within a Bayesian framework. The developed multimodel Bayesian approach to data-worth analysis works well in a real geostatistical problem. In particular, the selection of target for additional data collection based on the approach is validated against actual data collected.;The last part of the dissertation presents an efficient method of Bayesian uncertainty analysis. While Bayesian analysis is vital to quantify predictive uncertainty in groundwater modeling, its application has been hindered in multimodel uncertainty analysis because of computational cost of numerous models executions and the difficulty in sampling from the complicated posterior probability density functions of model parameters. This dissertation develops a new method to improve computational efficiency of Bayesian uncertainty analysis using sparse-grid method. The developed sparse-grid-based method for Bayesian uncertainty analysis demonstrates its superior accuracy and efficiency to classic importance sampling and MCMC sampler when applied to a groundwater flow model.
机译:地下水系统开放且复杂,使它们易于进行多种概念解释和数学描述。当基于可用的知识和数据可以接受多个模型时,就会出现模型不确定性。评估模型不确定性的一种方法是为一个站点假设几个替代水文模型,并使用模型选择标准来(1)对这些模型进行排名,(2)消除其中一些模型,和/或(3)由模型生成的权重和平均预测统计数据基于模型概率的多个模型。这种多模型分析导致水文地质学家之间对诸如AIC,AICc,BIC和KIC之类的常见模型选择标准的优缺点进行了一些辩论。本文通过理论上和数值上比较两个通用贝叶斯准则(BIC和KIC)的能力,为讨论做出了贡献。比较结果表明,使用MCMC结果作为参考,KIC比BIC可以得出更准确的模型概率近似值。尽管KIC渐近地减少到BIC,但KIC可以为一系列样本量提供更可靠的模型质量指示。在多模型分析中,平均预测不确定性的模型是各个模型的预测不确定性的加权平均值。因此,正确量化各个模型的预测不确定性很重要。基于回归理论的置信区间和基于贝叶斯理论的可信区间在概念上是量化预测不确定性的不同方法,并且两者都广泛用于地下水建模中。本文从理论和数值上探讨了它们的异同。比较结果表明,对于给定的高斯分布观测误差,对于线性或线性非线性模型,当使用一致的先验参数信息时,线性置信度和可信区间在数值上是相同的。对于非线性模型,如果使用基于近似似然法的参数置信度和可信区域,并且固有模型非线性较小,则非线性置信度和可信区间在数值上可以相同。但由于在计算置信度和可信区间方面存在数字困难,因此它们在实践中有所不同。与单个模型的置信度和可信区间之间的差异相比,模型误差是一个更为重要的问题,这表明考虑替代模型的重要性。模型校准结果是模型选择标准区分模型的基础。但是,如何将校准数据错误纳入校准过程是一个未解决的问题。可以看出,由于在校准中错误概率结构的使用不当,模型选择标准导致了一种不切实际的情况,其中一个模型获得了压倒性的高平均权重(甚至100%),而现有数据无法证明这一点。和知识。本文发现,标定中反映的误差应包括测量误差和模型误差两部分。为了考虑总误差的概率结构,我提出了一种具有两个阶段的参数估计的迭代校准方法。与仅考虑测量误差的结果相比,基于估计结果的多模型分析可导致更合理的平均权重和更好的平均预测性能。传统上,数据价值分析依赖于具有指定参数的单个概念数学模型。但是,这使得模型预测容易出现统计偏差和不确定性低估,从而影响地下水管理决策。本文提出了一种基于贝叶斯框架内模型平均的最优数据价值分析的多模型方法。已开发的用于数据价值分析的多模型贝叶斯方法在实际的地统计问题中效果很好。特别是,针对该方法选择的额外数据收集目标是根据实际收集的数据进行验证的。本文的最后一部分提出了一种有效的贝叶斯不确定性分析方法。尽管贝叶斯分析对于量化地下水模型中的预测不确定性至关重要,但由于众多模型执行的计算成本以及难以从模型参数的后验概率密度函数中进行采样的困难,其在多模型不确定性分析中的应用受到了阻碍。本文提出了一种利用稀疏网格法提高贝叶斯不确定性分析计算效率的新方法。用于贝叶斯不确定性分析的已开发的基于稀疏网格的方法证明了其在应用于地下水流模型中的经典重要性采样和MCMC采样器具有更高的准确性和效率。

著录项

  • 作者

    Lu, Dan.;

  • 作者单位

    The Florida State University.;

  • 授予单位 The Florida State University.;
  • 学科 Hydrology.;Engineering Geological.;Engineering Environmental.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 193 p.
  • 总页数 193
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号