首页> 外文学位 >Uncertainty quantification of groundwater reactive transport and coastal morphological modeling.
【24h】

Uncertainty quantification of groundwater reactive transport and coastal morphological modeling.

机译:地下水反应性运输的不确定性量化和海岸形态学建模。

获取原文
获取原文并翻译 | 示例

摘要

Different sources of uncertainties have been inevitably induced into the environmental modeling due to different reasons such as the variability in the future climate state, incomplete knowledge and complexity of the nature system, and randomness in the system properties. These uncertainties make the model predictions inherently uncertain, and uncertainty becomes an important obstacle in environmental modeling. This dissertation presents a general framework for purpose of uncertainty quantification and it provides quantitative measures for relative importance of different uncertain factors to model outputs. The framework includes two parts: uncertainty analysis which implements variance decomposition technique to decompose and quantify different types of input uncertainty sources (i.e., scenario, model and parametric uncertainties); global sensitivity analysis which develops a new set of variance-based global sensitivity indices for measuring importance of model parameters with considering multiple future climate scenarios and plausible models.;To demonstrate the usage and compatibility of the uncertainty quantification framework with different types of models, it was applied into two distinct cases: a synthetic groundwater reactive transport case and a barrier island morphological case. In the groundwater case, a Bayesian network integrated groundwater reactive transport model was built and studied for a synthetic case. Different uncertainty sources are described as uncertain nodes in the Bayesian network. All the nodes are characterized by multiple states, representing their uncertainty, in the form of continuous or discrete probability distributions that are propagated to the model endpoint, which is the spatial distribution of contaminant concentrations. In the barrier island case, a new Barrier Island Profile (BIP) model which simulates the barrier island cross-section morphological evolution was developed and studied. For a series of barrier island cross-sections derived from the characteristics of Santa Rosa Island, Florida, BIP was used to evaluate their responses to random storm events and five potential accelerated rates of sea-level rise projected over a century. Monte Carlo simulation is used to decompose and quantify the predictive uncertainties for uncertainty analysis of both cases. In the global sensitivity analysis, besides quasi-Monte Carlo simulation, sparse grid collocation method was also implemented to estimate the global sensitivity index to save the computational cost in the groundwater case.;The study of BIP model demonstrates that BIP is capable of simulating realistic patterns of barrier island profile evolution over the span of a century using relatively simple representations of time- and space-averaged processes with consideration of uncertainty of future climate impacts. The results of uncertainty quantification for both cases demonstrate different types of model input uncertainty sources and the relative importance of model parameters can be quantified using the developed uncertainty quantification framework. And the global sensitivity indices may vary substantially between different models and scenarios. Not considering the model and scenario uncertainties, may result biased identification of important model parameters. The framework will be very useful for environmental modelers to prioritize different uncertainties and optimize expanse of limited resources to more efficiently decrease predictive uncertainty. Although only two applications are demonstrated, this uncertainty quantification framework is mathematically general and it can be applied to a wider range of hydrologic and environmental problems.
机译:由于各种原因,例如未来气候状态的可变性,自然系统的不完整知识和复杂性以及系统特性的随机性,不可避免地将不同的不确定性来源引入环境模型。这些不确定性使模型预测具有固有的不确定性,不确定性成为环境建模的重要障碍。本文提出了不确定性量化目的的通用框架,并为不同不确定性因素对模型输出的相对重要性提供了量化措施。该框架包括两部分:不确定性分析,其采用方差分解技术分解和量化不同类型的输入不确定性源(即方案,模型和参数不确定性);全局敏感性分析,它开发了一套新的基于方差的全局敏感性指数,用于在考虑多个未来气候情景和可行模型的情况下测量模型参数的重要性。;为了证明不确定性量化框架与不同类型的模型的用法和兼容性,它在两个不同的案例中应用了这一方法:合成地下水反应性运输案例和屏障岛形态案例。在地下水情况下,建立了贝叶斯网络综合地下水反应性输运模型,并研究了一个合成情况。不同的不确定性源被描述为贝叶斯网络中的不确定性节点。所有节点都具有多个状态,这些状态表示其不确定性,形式为连续或离散的概率分布,并传播到模型端点,即污染物浓度的空间分布。在障碍岛的情况下,开发并研究了新的障碍岛轮廓(BIP)模型,该模型可模拟障碍岛横截面的形态演变。对于从佛罗里达州圣罗莎岛的特征得出的一系列障碍岛横截面,使用BIP评估了它们对随机风暴事件的响应以及一个世纪以来预计的五种潜在海平面上升速率。蒙特卡洛模拟用于分解和量化用于两种情况的不确定性分析的预测不确定性。在全局敏感性分析中,除准蒙特卡罗模拟外,还采用稀疏网格搭配方法估计全局敏感性指数,以节省地下水情况下的计算成本。; BIP模型的研究表明,BIP具有模拟真实性的能力。考虑到未来气候影响的不确定性,使用时间和空间平均过程的相对简单表示法,可以了解一个世纪以来屏障岛分布的演变模式。两种情况下不确定性量化的结果表明,不同类型的模型输入不确定性来源,并且可以使用发达的不确定性量化框架来量化模型参数的相对重要性。而且,全球敏感性指数在不同模型和场景之间可能会有很大差异。不考虑模型和方案的不确定性,可能导致重要模型参数的识别偏差。该框架对于环境建模人员优先考虑不同的不确定性并优化有限资源的范围以更有效地降低预测不确定性非常有用。尽管仅演示了两种应用,但这种不确定性量化框架在数学上是通用的,可以应用于更广泛的水文和环境问题。

著录项

  • 作者

    Dai, Heng.;

  • 作者单位

    The Florida State University.;

  • 授予单位 The Florida State University.;
  • 学科 Geological engineering.;Geomorphology.;Hydrologic sciences.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 167 p.
  • 总页数 167
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号