首页> 外文学位 >Functionalization and Characterization of Nanomaterial Gated Field-Effect Transistor-Based Biosensors and the Design of a Multi-Analyte Implantable Biosensing Platform.
【24h】

Functionalization and Characterization of Nanomaterial Gated Field-Effect Transistor-Based Biosensors and the Design of a Multi-Analyte Implantable Biosensing Platform.

机译:纳米材料门控基于场效应晶体管的生物传感器的功能化和表征,以及多分析物可植入生物传感平台的设计。

获取原文
获取原文并翻译 | 示例

摘要

Advances in semiconductor research and complementary-metal-oxide semiconductor fabrication allow for the design and implementation of miniaturized metabolic monitoring systems, as well as advanced biosensor design. The first part of this dissertation will focus on the design and fabrication of nanomaterial (single-walled carbon nanotube and quantum dot) gated field-effect transistors configured as protein sensors. These novel device structures have been functionalized with single-stranded DNA aptamers, and have shown sensor operation towards the protein Thrombin. Such advanced transistor-based sensing schemes present considerable advantages over traditional sensing methodologies in view of its miniaturization, low cost, and facile fabrication, paving the way for the ultimate realization of a multi-analyte lab-on-chip.;The second part of this dissertation focuses on the design and fabrication of a needle-implantable glucose sensing platform which is based solely on photovoltaic powering and optical communication. By employing these powering and communication schemes, this design negates the need for bulky on-chip RF-based transmitters and batteries in an effort to attain extreme miniaturization required for needle-implantable/extractable applications. A complete single-sensor system coupled with a miniaturized amperometric glucose sensor has been demonstrated to exhibit reality of this technology. Furthermore, an optical selection scheme of multiple potentiostats for four different analytes (glucose, lactate, O 2 and CO2) as well as the optical transmission of sensor data has been designed for multi-analyte applications.;The last part of this dissertation will focus on the development of a computational model for the amperometric glucose sensors employed in the aforementioned implantable platform. This model has been applied to single-layer single-enzyme systems, as well as multi-layer (single enzyme) systems utilizing glucose flux limiting layer-by-layer assembled outer membranes. The concentration of glucose and hydrogen peroxide within the sensor geometry, the transient response and the device response time has been simulated for both systems.
机译:半导体研究和互补金属氧化物半导体制造技术的进步允许设计和实现小型化的代谢监测系统,以及先进的生物传感器设计。本论文的第一部分将重点研究配置为蛋白质传感器的纳米材料(单壁碳纳米管和量子点)门控场效应晶体管的设计和制造。这些新颖的设备结构已通过单链DNA适体功能化,并已显示出对蛋白质凝血酶的传感器功能。这种先进的基于晶体管的传感方案由于其小型化,低成本和易于制造的特点,相对于传统传感方法具有相当大的优势,为最终实现多分析物芯片实验室铺平了道路。本论文的重点是仅基于光伏供电和光通信的可植入式针头葡萄糖传感平台的设计与制造。通过采用这些供电和通信方案,该设计消除了对庞大的基于芯片的基于RF的发射器和电池的需求,从而实现了针植入/可提取应用所需的极端小型化。一个完整的单传感器系统与一个小型的安培型葡萄糖传感器相结合已被证明可以展示该技术的现实。此外,针对多种分析物,设计了一种针对四种不同分析物(葡萄糖,乳酸,O 2和CO 2)的多个恒电位仪的光学选择方案以及传感器数据的光学传输。关于在上述可植入平台中使用的电流型葡萄糖传感器的计算模型的开发。该模型已应用于单层单酶系统以及利用葡萄糖流量限制逐层组装的外膜的多层(单酶)系统。两种系统都模拟了传感器几何结构,瞬态响应和设备响应时间中葡萄糖和过氧化氢的浓度。

著录项

  • 作者

    Croce, Robert A., Jr.;

  • 作者单位

    University of Connecticut.;

  • 授予单位 University of Connecticut.;
  • 学科 Engineering Electronics and Electrical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 141 p.
  • 总页数 141
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号