首页> 外文学位 >Structural studies of methylenetetrahydrofolate reductase and cobalamin-independent methionine synthase: Back-to-back enzymes in one-carbon metabolism.
【24h】

Structural studies of methylenetetrahydrofolate reductase and cobalamin-independent methionine synthase: Back-to-back enzymes in one-carbon metabolism.

机译:亚甲基四氢叶酸还原酶和不依赖钴胺素的蛋氨酸合酶的结构研究:单碳代谢中的背靠背酶。

获取原文
获取原文并翻译 | 示例

摘要

The reduction of methylenetetrahydrofolate (CH2-H4folate) to methyltetrahydrofolate (CH3-H4folate) is the penultimate step in methionine biosynthesis. This reaction is catalyzed by the enzyme methylenetetrahydrofolate reductase (MTHFR), which uses a flavin cofactor to catalyze hydride transfer from reduced pyridine nucleotide to folate. It is the only enzyme known to catalyze direct chemistry between folate and flavin. The MTHFR reaction is the sole source of CH3-H4folate for use by methionine synthase, which transfers the folate-bound methyl group to homocysteine (Hcy). Two distinct enzymes catalyze this transfer: B 12-dependent methionine synthase (MetH) and B12-independent methionine synthase (MetE).; MTHFR does not include any established nucleotide-binding sequence motifs. To determine how substrates are bound, I have analyzed the crystal structures of E. coli MTHFR with bound NADH and CH3-H 4folate. These structures complement the previously determined substrate-free form and allow an understanding of how this enzyme is able to accommodate two different substrates using one active site landscape. In contrast to other flavin enzymes, MTHFR adopts a Spartan strategy where only minor side chain rearrangements are used to differentiate between substrates.; While MetE and MetH are both zinc metalloenzymes, they show no sequence homology and have different cofactor requirements. MetH recruits one of nature's most powerful and rare cofactors while MetE is somehow able to catalyze the same difficult chemistry without it. Given these criteria, to what degree are their structural mechanisms evolutionarily constrained? I have solved the crystal structure of MetE from Thermotoga maritima (TM1286) in substrate-free form and in binary complexes with CH3-H 4folate and Hcy. MetE adopts a unique face-to-face double barrel structure that evolved by gene duplication. Comparison with the recently determined structures of MetH reveals that both enzymes use zinc-adapted (betaalpha) 8 barrels to activate Hcy but display highly dissimilar CH3-H 4folate binding strategies. Interestingly, the unique structural adaptations of MetE are replicated in the enzyme uroporphyrinogen decarboxylase (UroD), which is not a metalloprotein and catalyzes a completely unrelated reaction. These findings support the theory that function recruits form in enzyme evolution.
机译:亚甲基四氢叶酸(CH2-H4叶酸)还原为甲基四氢叶酸(CH3-H4叶酸)是蛋氨酸生物合成中的倒数第二个步骤。该反应由亚甲基四氢叶酸还原酶(MTHFR)催化,该酶使用黄素辅因子催化氢化物从还原的吡啶核苷酸转移至叶酸。它是已知的催化叶酸和黄素之间直接化学反应的唯一酶。 MTHFR反应是甲硫氨酸合酶使用的CH3-H4叶酸的唯一来源,该酶将叶酸结合的甲基转移至高半胱氨酸(Hcy)。两种不同的酶催化这种转移:B 12依赖性蛋氨酸合酶(MetH)和B12依赖性蛋氨酸合酶(MetE)。 MTHFR不包括任何已建立的核苷酸结合序列基序。为了确定底物如何结合,我分析了结合了NADH和CH3-H 4叶酸的大肠杆菌MTHFR的晶体结构。这些结构补充了先前确定的无底物形式,并允许了解该酶如何使用一个活性位点景观来容纳两种不同的底物。与其他黄素酶相反,MTHFR采用Spartan策略,其中仅使用较小的侧链重排来区分底物。虽然MetE和MetH都是锌金属酶,但它们没有序列同源性,并且对辅因子的要求不同。 MetH吸收了自然界中最强大,最稀有的辅助因子之一,而MetE在某种程度上能够催化同样困难的化学反应。给定这些标准,它们的结构机制在多大程度上受到约束?我已经解决了无栖基质(Thermotoga maritima)(TM1286)中MetE的晶体结构,该晶体结构为无底物形式以及与CH3-H 4叶酸酯和Hcy的二元配合物。 MetE采用独特的面对面双桶结构,该结构通过基因复制而进化。与最近确定的MetH结构比较表明,两种酶都使用锌适应性(betaalpha)8桶来激活Hcy,但显示出高度不同的CH3-H 4叶酸结合策略。有趣的是,MetE的独特结构适应性在尿卟啉原脱羧酶(UroD)中复制,该酶不是金属蛋白,可催化完全无关的反应。这些发现支持了在酶进化中功能募集的理论。

著录项

  • 作者

    Pejchal, Robert.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Chemistry Biochemistry.; Biology General.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 243 p.
  • 总页数 243
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物化学;普通生物学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号