首页> 外文学位 >Atomic structural features of dopant segregated grain boundary complexions in alumina by EXAFS.
【24h】

Atomic structural features of dopant segregated grain boundary complexions in alumina by EXAFS.

机译:通过EXAFS研究氧化铝中掺杂剂的原子结构特征,使它们在晶界处偏析。

获取原文
获取原文并翻译 | 示例

摘要

The primary objective of this undertaking was to characterize the atomic structural features of dopant-segregated interfaces in a (pseudo) single phase microstructure and relate the same to atomic diffusion in the grain boundaries. Alumina was chosen as a model host system based on prior observations of grain boundary complexions in this system by electron microscopy. Two types of dopant chemistry were selected that are known to produce dramatically different microstructural behavior in alumina. These were, (i) rare earth element doping (Y) and (ii) Y-Si co-doping in alumina. In Y-doped alumina microstructures, different Gibbsian excess of the segregated dopant has been known to produce two distinct types of interface complexions. On the other hand, three distinct types of disordered grain boundary complexions have been observed in Y-Si codoped alumina. A quantitative grain growth study was performed in dense microstructures of these materials and different kinetic regimes of boundary mobility were identified. Subsequently, samples annealed at various temperatures were quenched to preserve the grain boundary structure and characterized using synchrotron extended X-ray absorption fine structure spectroscopy (EXAFS) at the Y K-edge. Distinct local structural features of the dopant segregation induced interface phases were observed and were used to distinguish between each of the complexion types. Computation of EXAFS spectra of theoretical clusters by ab initio methods and fitting the same with experimental data identified several types of interface complexions including: (i) sub-monolayer adsorption, where oversized isovalent dopants (Y) occupy substitutional cation sites at the grain boundary core and reduce the interface energy, (ii) saturation of dopants at the interface leading to bilayer adsorption, where dopants (Y) substitute host cations on both sides of the boundary interpolating into the crystals, (iii) multilayered adsorption, where a pseudo-amorphous phase of high specific volume appears at a particular combination of temperature and chemistry, (iv) thin intergranular amorphous films in the Y-Si-O system, and (v) thick intergranular wetting films with a structure similar to that of yttrium aluminosilicate bulk glass. The structure of these interface phases correlated directly with the experimental boundary mobility, indicating a progressive increase in the diffusion rate across the boundary with increased disorder in the interface phase. Additionally, results of three other doped alumina systems including La-doped, Zr-doped and Cu-Ti co-doped alumina, are presented in the appendices that provide substantial evidence for the existence of various complexion types. A first order transition in boundary mobility was observed in Zr-doped alumina that may be related to the transition from a sub-monolayer adsorption to a bilayer configuration. Metallic copper of constrained dimension was found to exist in dense Cu-Ti co-doped alumina that was postulated to exist as an intergranular layer in the microstructure. These findings provide validation to the concept of interface kinetic engineering exploiting grain boundary complexions, wherein by engineering the chemistry of a polycrystalline interface dramatically different microstructures can be processed.
机译:这项工作的主要目的是表征(伪)单相微结构中掺杂物偏析界面的原子结构特征,并将其与晶界中的原子扩散相关联。基于先前通过电子显微镜观察的该系统中晶界肤色的观察,选择氧化铝作为模型宿主系统。选择了两种类型的掺杂剂化学物质,已知它们会在氧化铝中产生显着不同的微观结构行为。它们是:(i)稀土元素掺杂(Y)和(ii)在氧化铝中共掺杂Y-Si。在Y掺杂的氧化铝微结构中,已知不同的吉布斯过量的分离的掺杂剂产生两种不同类型的界面络合物。另一方面,在Y-Si共掺杂氧化铝中观察到三种不同类型的无序晶界肤色。在这些材料的致密微观结构中进行了定量晶粒长大研究,并确定了边界迁移率的不同动力学机制。随后,将在不同温度下退火的样品淬火以保留晶界结构,并使用同步加速器扩展X射线吸收精细结构光谱(EXAFS)在Y K边缘进行表征。观察到掺杂剂偏析引起的界面相的不同局部结构特征,并用于区分每种肤色类型。通过从头算方法计算理论簇的EXAFS光谱并将其与实验数据拟合,确定了几种类型的界面络合物,包括:(i)亚单层吸附,其中超大的等价掺杂物(Y)占据了晶界核心处的取代阳离子位点并降低界面能,(ii)掺杂剂在界面处的饱和导致双层吸附,其中掺杂剂(Y)替代边界两侧的主体阳离子内插到晶体中,(iii)多层吸附,其中伪非晶高比容的液相出现在温度和化学的特定结合下;(iv)Y-Si-O系统中的薄晶间无定形膜,以及(v)类似于钇铝硅酸盐块状玻璃的结构的厚晶间湿膜。这些界面相的结构与实验边界迁移率直接相关,这表明随着界面相无序度的增加,跨边界扩散速率逐渐增加。此外,附录中还列出了其他三种掺杂的氧化铝体系的结果,其中包括La掺杂,Zr掺杂和Cu-Ti共掺杂氧化铝,为各种络合物类型的存在提供了实质性证据。在掺Zr的氧化铝中观察到边界迁移率的一级转变,这可能与从亚单层吸附到双层构型的转变有关。已发现尺寸受限的金属铜存在于致密的Cu-Ti共掺杂氧化铝中,该氧化铝被假定以微观结构的晶间层存在。这些发现为利用晶界肤色的界面动力学工程学的概念提供了验证,其中通过工程化多晶界面的化学性质,可以加工出截然不同的微观结构。

著录项

  • 作者

    Behera, Shantanu Kumar.;

  • 作者单位

    Lehigh University.;

  • 授予单位 Lehigh University.;
  • 学科 Physics Condensed Matter.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 223 p.
  • 总页数 223
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号