首页> 外文学位 >Roles of convection in the evolution of planetary interiors and terrestrial lithospheres.
【24h】

Roles of convection in the evolution of planetary interiors and terrestrial lithospheres.

机译:对流在行星内部和地球岩石圈演化中的作用。

获取原文
获取原文并翻译 | 示例

摘要

Planetary mantle interiors deform by solid-state creep and behave like viscous fluids on long timescales. By studying the behavior of fluids, it is possible to study mantle flow and convection. Suites of numerical experiments can aid in the understanding of how different fluid characteristics affect the behaviors of connective motions. Scaling laws and parameterizations can be created and applied to planetary evolution questions. Two important influences on connective behavior are viscosity and the driving density differences. Solid-state creep predicted for mantle materials is strongly dependent on temperature and pressure. This, then, suggests the importance of examining the behaviors of fluids with temperature and pressure-dependent viscosities. In order for some of our numerical experiments to be properly resolved, we must use viscosities that are not as strongly dependent on temperature as expected in mantle minerals. We can then use our experiments as a basis for the scaling laws needed to extrapolate to the more strongly temperature-dependent viscosity thought to characterize the mantle of the Earth and other planets. The density of silicate minerals varies with both temperature and composition. Therefore, the density in our numerical models is considered to be a function of both temperature and inherent composition. Compositional stratification can result from magma ocean cumulate overturn or from large-scale mantle melting. Convection is studied in the presence of both stable and unstable stratifications. In the presence of stable compositional stratification, the onset time of thermal convection can be significantly delayed, and the vigor and depth extent of this convection can be greatly reduced. Strongly temperature-dependent viscosity reduces the available buoyancy to drive convection and therefore increases the impact of stable compositional stratification. In the early history a planet, gravitational overturn in unstable stratified mantles can be fast and fairly complete. The resulting inverted temperature structure could aid in the creation of an early crust and magnetic field. We also explore the effect that temperature and pressure-dependent viscosities have on the evolution of terrestrial lithospheres by using flux balance calculations and numerical evolution models. We focus on the influence of small-scale convection, crustal radioactive heating, and basal erosion.
机译:行星地幔内部会因固态蠕变而变形,并且在较长的时间范围内表现得像粘性流体。通过研究流体的行为,可以研究地幔流动和对流。一组数值实验可以帮助理解不同的流体特性如何影响结缔运动的行为。比例定律和参数化可以被创建并应用于行星演化问题。对连接行为的两个重要影响是粘度和驱动密度差异。预测地幔材料的固态蠕变在很大程度上取决于温度和压力。因此,这表明检查具有温度和压力相关粘度的流体行为的重要性。为了正确解析我们的某些数值实验,我们必须使用粘度不像地幔矿物期望的那样强烈依赖温度。然后,我们可以将我们的实验作为缩放定律的基础,以推断出更强的温度依赖性粘度,以表征地球和其他行星的地幔。硅酸盐矿物的密度随温度和组成而变化。因此,我们数值模型中的密度被认为是温度和固有成分的函数。岩浆海洋累计倾覆或大规模地幔融化可导致成分分层。在存在稳定和不稳定分层的情况下研究对流。在稳定的组分分层存在下,热对流的开始时间可以显着延迟,并且这种对流的活力和深度程度可以大大降低。强烈地取决于温度的粘度降低了驱动对流的有效浮力,因此增加了稳定成分分层的影响。在早期的历史中,行星在不稳定的分层地幔中的引力倾覆可以快速而完全地完成。所得的倒置温度结构可能有助于产生早期的地壳和磁场。我们还通过使用通量平衡计算和数值演化模型来探索温度和压力相关粘度对地面岩石圈演化的影响。我们关注小型对流,地壳放射性加热和基底侵蚀的影响。

著录项

  • 作者

    Zaranek, Sarah Ellen.;

  • 作者单位

    Brown University.;

  • 授予单位 Brown University.;
  • 学科 Geophysics.; Geology.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 223 p.
  • 总页数 223
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 地球物理学;地质学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号