首页> 外文学位 >Surface-Based Assays for Enzyme Adsorption and Activity on Model Cellulose Films.
【24h】

Surface-Based Assays for Enzyme Adsorption and Activity on Model Cellulose Films.

机译:基于表面的酶在模型纤维素膜上的吸附和活性测定。

获取原文
获取原文并翻译 | 示例

摘要

Transportation fuels produced by harvesting and breaking down sturdy, fast-growing prairie grasses offer a renewable alternative to diminishing fossil-fuel supplies. The rate-limiting step in the production of renewable fuels from these lignocellulosic feedstocks is the enzymatic deconstruction of solid cellulose into glucose oligomers that are subsequently processed to form transportation fuels and fuel additives. Despite continuing research interest and significant subsidy of biofuel production, the mechanisms and kinetics governing this fundamental interaction remain largely unknown.;Cellulose, the world's most abundant biopolymer, is comprised of long glucose chains organized in an extensive hydrogen-bonding network that makes cellulose insoluble in water and recalcitrant to enzymatic degradation. Complete deconstruction of cellulose into soluble glucose oligomers requires the concerted action of several enzymes, collectively known as cellulases, that adsorb to the cellulose surface from aqueous solution and complex with cellulose chains. Current assays of cellulase activity are performed in the bulk, and thus fail to characterize this important surface interaction. Recently, thin model films of solid cellulose adhered to metal supports have become available. These model films offer well-defined substrates of known surface area on which cellulase activity can be characterized.;This work describes the development and application of surface-based assays for elucidating cellulase kinetics on model films of cellulose. The developed surface-based assays allow continuous, non-invasive, inhibition-free measurement of both enzyme adsorption and activity, and are, therefore, preferable to bulk assays. Ellipsometry, an optical technique that uses changes in the polarization of light to detect film thickness, is applied to prove the efficacy of surface-based assays for measuring the activity of a cellulase mixture on model cellulose films. Degradation rates measured by ellipsometry are identical to those measured by a traditional bulk glycan assay on Avicel, a laboratory-standard cellulose. Quartz crystal microgravimetry (QCM), an acoustic technique that uses changes in the resonance of a quartz crystal to detect adsorbed mass, is then used to measure the competitive adsorption and cooperative activity of two individual cellulases and their binary mixtures. Results obtained from both the optical and acoustic assays are commensurate.;Using data from these assays, cellulase adsorption and activity are described according to a two-enzyme surface kinetic model incorporating both Langmuir adsorption to the cellulose surface and Michaelis-Menten activity of adsorbed enzyme. The model additionally quantifies observed irreversible binding of cellulases and the cooperative activity of two cellulases in creating and degrading cellulose chain ends. Cel7A, a processive cellobiohydrolase that complexes with cellulose chain ends and digests cellulose chains into glucose oligomers, is shown to have 14 times higher adsorption affinity for the cellulose surface than does Cel7B, a non-processive endoglucanase that disrupts the hydrogen-bonding structure of the cellulose surface and creates chain ends. Both enzymes rapidly bind irreversibly to the cellulose surface, with 75 - 85% irreversibly bound after 1 h contact between aqueous enzyme and solid cellulose. Nevertheless, irreversibly bound enzymes remain catalytically active. The cellulytic activity of Cel7A is maximized by increasing cellulose surface chain-end concentration without leaving a large quantity of Cel7B irreversibly bound. These findings underscore the importance of considering surface concentration, rather than bulk concentration, in the design of optimal cellulase mixtures for biofuel production.;The kinetic constants governing adsorption and activity of Cel7A and Cel7B on the cellulose surface are obtained from single-enzyme experiments and used subsequently to predict the transient behavior of binary enzyme mixtures. In all cases, good agreement is shown between kinetic model and experiment, validating the surface-based assays. The ellipsometry and QCM techniques described in this thesis can be used further to measure the adsorption and complexation constants of other cellulases, to inform the design of cellulase cocktails, to quantify cellulase inhibition by aqueous glycans, to explore the role of substrate structure in cellulase activity, and to characterize loss of cellulase activity due to surface and thermal denaturation. Surface-based assays, therefore, represent an important new tool for addressing many outstanding problems in cellulose deconstruction.
机译:通过收获和分解结实的,快速生长的草原草产生的运输燃料,为减少化石燃料的供应提供了可再生的替代方法。从这些木质纤维素原料生产可再生燃料的限速步骤是将固体纤维素酶解为葡萄糖低聚物,然后将其加工成运输燃料和燃料添加剂。尽管有持续的研究兴趣和对生物燃料生产的大量补贴,但控制这种基本相互作用的机理和动力学仍然未知。;纤维素,世界上最丰富的生物聚合物,由长链葡萄糖链组成,葡萄糖链组织在广泛的氢键网络中,使纤维素不溶在水中和难降解的酶促降解。要将纤维素完全解构为可溶性葡萄糖低聚物,需要几种酶(统称为纤维素酶)的协同作用,这些酶从水溶液中吸附到纤维素表面并与纤维素链复合。纤维素酶活性的当前测定是大量进行的,因此不能表征这种重要的表面相互作用。近来,已经获得了粘附在金属载体上的固体纤维素的薄膜模型。这些模型膜提供了可以识别纤维素酶活性的已知表面积的明确底物。这项工作描述了用于阐明纤维素模型膜上纤维素酶动力学的基于表面的测定方法的开发和应用。已开发的基于表面的测定法可以连续,无创,无抑制地测量酶的吸附和活性,因此,比批量测定法更可取。椭偏仪是一种利用光的偏振变化来检测膜厚的光学技术,被用于证明基于表面的测定法可用于测量纤维素酶混合物在模型纤维素膜上的活性。通过椭圆偏振光度法测量的降解速率与通过实验室标准纤维素Avicel上的传统散装聚糖测定法测量的降解速率相同。石英晶体微重力法(QCM)是一种利用石英晶体共振变化来检测吸附质量的声学技术,然后用于测量两种单独的纤维素酶及其二元混合物的竞争性吸附和协同活性。从光学和声学测定中获得的结果是相当的。根据这些测定的数据,纤维素酶的吸附和活性是根据两种酶的表面动力学模型进行描述的,该模型结合了朗缪尔对纤维素表面的吸附和Michaelis-Menten酶的活性。该模型还量化了观察到的纤维素酶不可逆结合以及两种纤维素酶在创建和降解纤维素链端中的协同活性。 Cel7A是一种与纤维素链末端复合并能将纤维素链消化成葡萄糖低聚物的过程性纤维二糖水解酶,其对纤维素表面的吸附亲和力是Cel7B的14倍,Cel7B是一种非过程性内切葡聚糖酶,破坏了纤维素的氢键结构。纤维素表面并产生链端。两种酶快速不可逆地结合到纤维素表面,在水性酶和固体纤维素接触1小时后,不可逆地结合到75%至85%。但是,不可逆结合的酶仍具有催化活性。通过增加纤维素表面链末端的浓度,Cel7A的纤维素分解活性得以最大化,而不会留下大量不可逆结合的Cel7B。这些发现强调了在设计用于生物燃料的最佳纤维素酶混合物的设计中,考虑表面浓度而不是体积浓度的重要性。控制Cel7A和Cel7B在纤维素表面的吸附和活性的动力学常数是通过单酶实验获得的。随后用于预测二元酶混合物的瞬态行为。在所有情况下,动力学模型和实验之间都显示出良好的一致性,从而验证了基于表面的分析方法。本文所述的椭偏仪和QCM技术可进一步用于测量其他纤维素酶的吸附和络合常数,为纤维素酶混合物的设计提供参考,量化含水聚糖对纤维素酶的抑制作用,探索底物结构在纤维素酶活性中的作用。 ,并表征由于表面和热变性导致的纤维素酶活性损失。因此,基于表面的测定法是解决纤维素解构中许多突出问题的重要新工具。

著录项

  • 作者

    Maurer, Samuel Andrew.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 114 p.
  • 总页数 114
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号