首页> 外文学位 >Identifying the complete space of feasible anisotropic properties in polycrystalline microstructures.
【24h】

Identifying the complete space of feasible anisotropic properties in polycrystalline microstructures.

机译:确定多晶微观结构中可行各向异性性质的完整空间。

获取原文
获取原文并翻译 | 示例

摘要

Current engineering design focuses mainly on the geometrical optimization of a component, while the material selection is often limited to picking a material based on a set of properties reported in handbooks. The inherent anisotropic behavior of materials is often ignored in the design process, and is usually assumed to be addressed by the safety factor employed. This simple treatment of material selection in the design and optimization process often leads to inefficient design. In this study, we present a rigorous and a comprehensive procedure that facilitates the treatment of material microstructure as a continuous design variable in the elastic-plastic design of structural components made from anisotropic polycrystalline metals.; The mechanical behavior of a metal is influenced by several details of its microstructure, including chemical composition, grain size distribution, crystallographic texture, among others. Here, we focus on the crystallographic texture (also called Orientation Distribution Function or ODF) as the main microstructural parameter controlling the anisotropic elastic-plastic properties of interest. The property closures that we have delineated describe the complete set of feasible property combinations for a given polycrystalline material system, while accounting for all possible textures. The property closures are obtained here using a spectral representation of ODF and its relationship with rigorous first order bounds on the effective properties of interest in design. Using the proposed methodology, we successfully developed a few examples of property closures for face centered cubic (fcc) and hexagonal close-packed (hcp) metals.; The mechanical anisotropic behavior at the single crystal level for face centered cubic metals has been characterized using the nanoindentation technique along with orientation imaging mapping. This methodology shows promising possibilities to extract fundamental elastic and plastic parameters. However, the methods proposed in the literature to extract data from the load-displacement curves cause discrepancy between the experimental and expected values. The discrepancy could be attributed to the induced plastic deformation among other factors.
机译:当前的工程设计主要集中在部件的几何优化上,而材料的选择通常仅限于根据手册中报告的一组特性来选择材料。材料的固有各向异性行为通常在设计过程中被忽略,并且通常假定通过使用的安全系数来解决。在设计和优化过程中对材料选择的这种简单处理常常导致效率低下的设计。在这项研究中,我们提出了一个严格而全面的程序,该程序促进了将材料微观结构作为由各向异性多晶金属制成的结构部件的弹塑性设计中的连续设计变量进行处理。金属的机械行为受其微观结构的几个细节影响,包括化学成分,晶粒大小分布,晶体学纹理等。在这里,我们集中于晶体学纹理(也称为取向分布函数或ODF)作为控制感兴趣的各向异性弹塑性特性的主要微结构参数。我们描述的特性闭包描述了给定多晶材料系统的所有可行特性组合的完整集合,同时考虑了所有可能的纹理。这里使用ODF的频谱表示及其与设计中关注的有效特性的严格一阶界限的关系来获得特性闭包。使用所提出的方法,我们成功开发了一些面心立方(fcc)和六角密堆积(hcp)金属的特性封闭示例。使用纳米压痕技术和取向成像映射,可以表征面心立方金属在单晶级的机械各向异性行为。这种方法论显示出提取基本弹性和塑性参数的有希望的可能性。但是,文献中提出的从载荷-位移曲线中提取数据的方法导致了实验值和预期值之间的差异。差异可归因于其他因素引起的塑性变形。

著录项

  • 作者

    Proust, Gwenaelle.;

  • 作者单位

    Drexel University.;

  • 授予单位 Drexel University.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 146 p.
  • 总页数 146
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号