首页> 外文学位 >Analysis of Plasmodium falciparum chloroquine resistance transporters in Saccharomyces cerevisiae.
【24h】

Analysis of Plasmodium falciparum chloroquine resistance transporters in Saccharomyces cerevisiae.

机译:酿酒酵母中恶性疟原虫氯喹抗性转运蛋白的分析。

获取原文
获取原文并翻译 | 示例

摘要

The evolution of drug resistance in malaria parasites continues to hamper global eradication campaigns and wreak havoc in endemic countries. Mutations in the Plasmodium falciparum chloroquine resistance transporter (PfCRT) have been identified as the determinant for chloroquine (CQ) resistance (CQR) in malaria parasites. PfCRT is an integral membrane protein that localizes to the digestive vacuole (DV) during the intraerythrocytic stages of the parasite's life cycle and controls an essential, yet unknown, endogenous function. Mutant proteins modify the biochemical process that the parasite exploits in order to evade toxic by-products released during obligate hemoglobin digestion. The purpose of this study was to further elucidate key features of drug resistance in malaria parasites using yeast as model system.;To further characterize the structure and function of PfCRT, I have employed a galactose-inducible heterologous system in S. cerevisiae wherein expression of CRT proteins in the plasma membrane (PM) of growing yeast leads to CQ hypersensitivity phenotype. I have developed several drug sensitivity assays to measure PfCRT-mediated CQ transport function associated with chloroquine sensitive (CQS) and CQR isoforms, including the PfCRT orthologue PvCRT. My results suggest that both mutant CQR- and CQS- associated isoforms are capable of PfCRT-mediated CQ transport and that CQR associated isoforms are stimulated by membrane potential. Improvements to the yeast system have allowed me to reliably distinguish between 15 different naturally occurring CQR isoforms from around the globe. My interpretation of these results, that mutations in PfCRT are not enough to fully recapitulate CQR in the parasite, suggest that additional mutations are required to fully modulate CQR phenomena.;I further exploit the yeast system to elucidate mechanisms underlying the toxicity and tolerance of CQ to yeast. My results suggest that vacuolar membrane potential and mitochondrial function play a key role in mediating cytocidal CQ resistance in yeast. My results from attempts to identify the natural physiologic substrate of PfCRT suggest that PfCRT may play a role in ion homeostasis.;This study demonstrates the use of a model eukaryotic heterologous system to elucidate key features of a resistance protein from malaria parasites and highlights the potential of using this system to characterize its endogenous substrate.
机译:疟原虫的耐药性演变继续阻碍全球根除运动,并在流行国家造成严重破坏。恶性疟原虫氯喹抗性转运蛋白(PfCRT)中的突变已被确定为疟原虫中氯喹(CQ)抗性(CQR)的决定因素。 PfCRT是一种不可或缺的膜蛋白,可在寄生虫生命周期的红细胞内阶段定位于消化液泡(DV),并控制基本但未知的内源功能。突变蛋白改变了寄生虫利用的生化过程,以逃避专心的血红蛋白消化过程中释放的有毒副产物。本研究的目的是使用酵母作为模型系统进一步阐明疟原虫的耐药性关键特征。为了进一步表征PfCRT的结构和功能,我在酿酒酵母中采用了半乳糖诱导的异源系统,其中生长中的酵母的质膜(PM)中的CRT蛋白导致CQ超敏性表型。我已经开发了几种药物敏感性测定法来测量与氯喹敏感性(CQS)和CQR亚型相关的PfCRT介导的CQ转运功能,包括PfCRT直系同源物PvCRT。我的结果表明,突变体CQR和CQS相关的同工型均能够进行PfCRT介导的CQ转运,而CQR相关的同工型则受到膜电位的刺激。酵母系统的改进使我能够可靠地区分全球15种不同的天然CQR同工型。我对这些结果的解释是,PfCRT中的突变不足以完全概括寄生虫中的CQR,这表明需要其他突变才能完全调节CQR现象。;我进一步利用酵母系统阐明了CQ毒性和耐受性的机制酵母。我的结果表明,液泡膜电位和线粒体功能在介导酵母中杀细胞CQ抗性中起关键作用。我从鉴定PfCRT的天然生理底物的尝试中得出的结果表明,PfCRT可能在离子稳态中发挥作用;这项研究表明使用模型真核异源系统阐明了来自疟原虫的抗性蛋白的关键特征并强调了其潜力使用该系统表征其内源底物的能力。

著录项

  • 作者

    Baro, Nicholas Kyle.;

  • 作者单位

    Georgetown University.;

  • 授予单位 Georgetown University.;
  • 学科 Biology Parasitology.;Chemistry Biochemistry.;Biology Molecular.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 246 p.
  • 总页数 246
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号