首页> 外文学位 >Estimation and Stability of Nonlinear Control Systems Under Intermittent Information with Applications to Multi-Agent Robotics.
【24h】

Estimation and Stability of Nonlinear Control Systems Under Intermittent Information with Applications to Multi-Agent Robotics.

机译:间歇信息下非线性控制系统的估计和稳定性及其在多智能体机器人中的应用。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation investigates the role of intermittent information in estimation and control problems and applies the obtained results to multi-agent tasks in robotics.;First, we develop a stochastic hybrid model of mobile networks able to capture a large variety of heterogeneous multi-agent problems and phenomena. This model is applied to a case study where a heterogeneous mobile sensor network cooperatively detects and tracks mobile targets based on intermittent observations. When these observations form a satisfactory target trajectory, a mobile sensor is switched to the pursuit mode and deployed to capture the target. The cost of operating the sensors is determined from the geometric properties of the network, environment and probability of target detection. The above case study is motivated by the Marco Polo game played by children in swimming pools.;Second, we develop adaptive sampling of targets' positions in order to minimize energy consumption, while satisfying performance guarantees such as increased probability of detection over time, and no-escape conditions. A parsimonious predictor-corrector tracking filter, that uses geometrical properties of targets' tracks to estimate their positions using imperfect and intermittent measurements, is presented. It is shown that this filter requires substantially less information and processing power than the Unscented Kalman Filter and Sampling Importance Resampling Particle Filter, while providing comparable estimation performance in the presence of intermittent information.;Third, we investigate stability of nonlinear control systems under intermittent information. We replace the traditional periodic paradigm, where the up-to-date information is transmitted and control laws are executed in a periodic fashion, with the event-triggered paradigm. Building on the small gain theorem, we develop input-output triggered control algorithms yielding stable closed-loop systems. In other words, based on the currently available (but outdated) measurements of the outputs and external inputs of a plant, a mechanism triggering when to obtain new measurements and update the control inputs is provided. Depending on the noise environment, the developed algorithm yields stable, asymptotically stable, and Lp -stable (with bias) closed-loop systems. Control loops are modeled as interconnections of hybrid systems for which novel results on Lp -stability are presented. Prediction of a triggering event is achieved by employing Lp -gains over a finite horizon in the small gain theorem. By resorting to convex programming, a method to compute Lp -gains over a finite horizon is devised.;Next, we investigate optimal intermittent feedback for nonlinear control systems. Using the currently available measurements from a plant, we develop a methodology that outputs when to update the control law with new measurements such that a given cost function is minimized. Our cost function captures trade-offs between the performance and energy consumption of the control system. The optimization problem is formulated as a Dynamic Programming problem, and Approximate Dynamic Programming is employed to solve it. Instead of advocating a particular approximation architecture for Approximate Dynamic Programming, we formulate properties that successful approximation architectures satisfy. In addition, we consider problems with partially observable states, and propose Particle Filtering to deal with partially observable states and intermittent feedback.;Finally, we investigate a decentralized output synchronization problem of heterogeneous linear systems. We develop a self-triggered output broadcasting policy for the interconnected systems. Broadcasting time instants adapt to the current communication topology. For a fixed topology, our broadcasting policy yields global exponential output synchronization, and Lp -stable output synchronization in the presence of disturbances. Employing a converse Lyapunov theorem for impulsive systems, we provide an average dwell time condition that yields disturbance-to-state stable output synchronization in case of switching topology. Our approach is applicable to directed and unbalanced communication topologies.
机译:本文研究了间歇性信息在估计和控制问题中的作用,并将所得结果应用于机器人技术中的多智能体任务。首先,我们开发了一种能够捕获多种异构多智能体问题的移动网络随机混合模型。和现象。该模型应用于案例研究,其中异构移动传感器网络基于间歇性观察来协作地检测和跟踪移动目标。当这些观察结果形成令人满意的目标轨迹时,移动传感器将切换到跟踪模式并展开以捕获目标。传感器的运行成本取决于网络的几何特性,环境和目标检测的可能性。上面的案例研究是由儿童在游泳池玩的马可波罗游戏激发的;其次,我们开发了目标位置的自适应采样,以最大程度地减少能耗,同时满足性能保证,例如随着时间的推移检测概率增加,以及不可逃脱的条件。提出了一种简约的预测器-校正器跟踪滤波器,该滤波器使用目标轨道的几何特性,通过不完美和间歇性的测量来估计其位置。结果表明,该滤波器比无味卡尔曼滤波器和采样重要性重采样粒子滤波器所需的信息和处理能力要少得多,同时在存在间歇信息的情况下可以提供可比的估计性能。第三,我们研究了间歇信息下非线性控制系统的稳定性。 。我们用事件触发的范式代替了传统的周期性范式,在传统范式中传输最新信息并以周期性方式执行控制律。在小增益定理的基础上,我们开发了输入输出触发控制算法,以产生稳定的闭环系统。换句话说,基于工厂的输出和外部输入的当前可用(但过时)的测量值,提供了一种触发何时获取新测量值和更新控制输入的机制。根据噪声环境,所开发的算法可产生稳定,渐近稳定和Lp稳定(带有偏置)的闭环系统。控制回路被建模为混合系统的互连,为此提出了有关Lp稳定性的新结果。触发事件的预测是通过在小增益定理中的有限范围内采用Lp增益来实现的。通过凸编程,设计了一种在有限范围内计算Lp增益的方法。接下来,我们研究了非线性控制系统的最优间歇反馈。利用工厂当前可用的度量,我们开发了一种方法,可以输出何时使用新度量更新控制律,从而使给定的成本函数最小化。我们的成本函数捕获了控制系统的性能和能耗之间的折衷。将优化问题表述为动态规划问题,并采用近似动态规划解决该问题。我们没有提倡近似动态编程的特定近似体系结构,而是制定成功的近似体系结构可以满足的属性。此外,我们考虑了部分可观测状态的问题,并提出了粒子滤波来处理部分可观测状态和间歇反馈。最后,我们研究了异构线性系统的分散输出同步问题。我们为互连系统制定了一个自触发输出广播策略。广播时刻适应当前的通信拓扑。对于固定拓扑,我们的广播策略会产生全局指数输出同步,并且在存在干扰的情况下会产生Lp稳定的输出同步。针对脉冲系统采用逆Lyapunov定理,我们提供了一个平均停留时间条件,在切换拓扑的情况下,该条件会产生扰动状态稳定的输出同步。我们的方法适用于定向和不平衡的通信拓扑。

著录项

  • 作者

    Tolic, Domagoj.;

  • 作者单位

    The University of New Mexico.;

  • 授予单位 The University of New Mexico.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 185 p.
  • 总页数 185
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:42:46

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号