首页> 外文学位 >Electrochemical characterizations and theoretical simulations of transport behaviors at nanoscale geometries and interfaces.
【24h】

Electrochemical characterizations and theoretical simulations of transport behaviors at nanoscale geometries and interfaces.

机译:在纳米级几何结构和界面上的传输行为的电化学表征和理论模拟。

获取原文
获取原文并翻译 | 示例

摘要

Since single nanopores were firstly proposed as a potential rapid and low-cost tool for DNA se-quencing in the 1990s (PNAS, 1996, 93, 13770), extensive studies on both biological and synthetic nano-pores and nanochannels have been reported. Nanochannel based stochastic sensing at single molecular level has been widely reported through the detection of transit ionic current changes induced by geometry blockage due to analytes translocation. Novel properties, including ion current rectification (ICR), memresistive and memcapacitive behaviors were reported. These fundamental properties of nanochannels arise from the nanoscale dimensions and enables applications not only in single molecule sensing, but also in drug delivery, electrochemical energy conversion, concentration enrichment and separation, nanocrystal growth, nanoelectronics etc. Electrostatic interactions at nanometer-scale between the fixed surface charges and mobile charges in solution play major roles in those applications due to high surface to volume ratio. However, the knowledge of surface charge density (SCD) at nanometer scale is inaccessible within nanoconfinement and often extrapolated from bulk planar values. The determination of SCD at nanometer scale is urgently needed for the interpretation of aforementioned phenomena. This dissertation mainly focuses on the determination of SCD confined at a nanoscale device with known geometry via combined electroanalytical measurements and theoretical simulation. The measured currents through charged nanodevices are different for potentials with the same amplitude but opposite polarities, which deviates away from linear Ohm's behavior, known as ICR. Through theoretical simulation of experiments by solving Poisson and Nernst-Planck equations, the SCD within nanoconfinement is directly quantified for the first time. An exponential gradient SCD is introduced on the interior surface of a conical nanopore based on the gradient distribution of applied electric field. The physical origin is proposed based on the facilitated deprotonation of surface functional groups by the applied electric field. The two parameters that describe the non-uniform SCD distribution: maximum SCD and distribution length are determined by fitting high and low-conductivity current respectively. The model is validated and applied successfully for quantification and prediction of mass transport behavior in different electrolyte solutions. Furthermore, because the surface charge distribution, the transport behaviors are intrinsically heterogeneous at nanometer scale, the concept is extended to noninvasively determine the surface modification efficacy of individual nanopore devices. Preliminary results of single molecule sensing based on streptavidin-iminobiotin are included. The pH dependent binding affinity of streptavidin-iminobiotin binding is confirmed by different current change signals (“steps” and “spikes”) observed at different pHs. Qualitative concentration and potential dependence have been established. The chemically modified nanopores are demonstrated to be reusable through regenerating binding surface.
机译:自从1990年代首次提出单个纳米孔作为一种潜在的快速低成本的DNA测序工具以来(PNAS,1996,93,13770),已经报道了对生物和合成纳米孔以及纳米通道的广泛研究。通过检测由于分析物易位引起的几何学阻塞而引起的传输离子电流变化,已广泛报道了在单个分子水平上基于纳米通道的随机传感。报告了包括离子电流整流(ICR),介电阻和介电容行为在内的新特性。纳米通道的这些基本特性源自纳米尺度,不仅可以应用于单分子传感,而且还可以应用于药物输送,电化学能量转换,浓度富集和分离,纳米晶体生长,纳米电子学等。固定分子之间在纳米尺度上发生静电相互作用由于高的表面体积比,溶液中的表面电荷和移动电荷在这些应用中起着主要作用。但是,在纳米约束范围内无法获得纳米级表面电荷密度(SCD)的知识,并且通常是从整体平面值中推断出来的。迫切需要纳米级的SCD测定来解释上述现象。本文主要通过电分析测量和理论模拟相结合的方法,确定了几何尺寸已知的纳米器件中的SCD。对于具有相同幅度但相反极性的电势,通过带电纳米器件的测量电流是不同的,这偏离了线性欧姆行为,即ICR。通过对泊松和Nernst-Planck方程进行求解的理论仿真实验,首次对纳米约束范围内的SCD进行了直接定量。基于所施加电场的梯度分布,在锥形纳米孔的内表面上引入了指数梯度SCD。基于施加的电场促进表面官能团的去质子化,提出了物理起源。描述SCD分布不均匀的两个参数:最大SCD和分布长度分别通过拟合高和低电导率电流来确定。该模型已验证并成功应用于量化和预测不同电解质溶液中的传质行为。此外,由于表面电荷分布,传输行为在纳米尺度上本质上是异质的,因此该概念被扩展为无创地确定各个纳米孔装置的表面改性功效。包括基于链霉亲和素-亚氨基生物素的单分子传感的初步结果。链霉亲和素-亚氨基生物素结合的pH依赖性结合亲和力通过在不同pH值下观察到的不同电流变化信号(“阶跃”和“尖峰”)得到证实。定性集中和潜在的依赖已建立。已证明化学修饰的纳米孔可通过再生结合表面而重复使用。

著录项

  • 作者

    Liu, Juan.;

  • 作者单位

    Georgia State University.;

  • 授予单位 Georgia State University.;
  • 学科 Chemistry Inorganic.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 133 p.
  • 总页数 133
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号