首页> 外文学位 >Controller Design for Hydraulic Position Control Systems.
【24h】

Controller Design for Hydraulic Position Control Systems.

机译:液压位置控制系统的控制器设计。

获取原文
获取原文并翻译 | 示例

摘要

In recent years, a great deal of interest has been oriented towards hydraulic systems which are energy efficient, responsive (tracking), and accurate. The traditional approach to achieve responsive and accurate positioning performance is to use a servo valve actuator and position and/or velocity feedback. An alternate positioning system is an electrohydraulic actuation system (EHA), in which the fluid from the hydraulic motor is directed back to the inlet of the pump. Changing the swashplate angle or varying the prime mover shaft speed varies the flow to the hydraulic actuator (linear or rotary) which in turn is used to control the positioning or speed of the load. Because there are no major losses associated with throttling of the fluid, power losses are minimized. In earlier EHA systems, the actuator was limited to that of a rotary system because of the requirement for symmetry in the flow to and from the motor. Recent design changes to linear single rod actuators have expanded the EHA applications to linear positioning. In addition, a specially designed EHA linear actuator system was shown to be able to position a load to 200 nanometers. However, the ability to track a desired input path was not extensively studied and as such, algorithms to control this high precision EHA system were required; hence this was the motivation for this study.;Control methods that were applied to HPCSs in the past decade were comprehensively reviewed in this dissertation. Many successful control algorithms have been developed for hydraulic transmission systems, however, certain problems such as slip-stick friction, uncertainty and nonlinearity in hydraulic actuators, pumps and valves are not fully addressed. Three control algorithms are considered in this study: (1) H2-optimal control, (2) H∞ PI plus feedforward control, and (3) robust sliding mode control. The design processes of these three algorithms were based on discrete-time system models. The first two algorithms were based on linear models of the systems while the third applied nonlinear actuator friction in the system model. These three different control algorithms are developed and implemented using simulations and experiments; in addition, their control performance in terms of position tracking and bandwidth performance are examined.;The original contributions of the research are:;1. Developing a comprehensive review of the control methods applied to HPCS systems during the past decade.;The main objective of the thesis was to develop high performance control schemes for (1) a valve controlled hydraulic positioning control system (HPCS) and (2) a specific precision positioning EHA system and verify their position tracking performance.;2. For the first time, applying the discrete-time H 2-optimal control algorithm on an HPCS system. The applicability of the discrete-time H2-optimal control for the HPCS was verified.;3. Developing a new framework (SOF) from a PI plus feedforward control framework. The feedback and feedforward gains were explicitly solved through H∞ optimization technique instead of traditional tuning.;4. Designing a novel controller called robust sliding mode controller (RSMC) with the sliding mode surface designed considering the parameter uncertainties in the nonlinear friction model.
机译:近年来,人们对节能,响应(跟踪)和精确的液压系统产生了浓厚的兴趣。实现响应性和精确定位性能的传统方法是使用伺服阀致动器以及位置和/或速度反馈。另一种定位系统是电动液压致动系统(EHA),其中来自液压马达的流体被引导回泵的入口。改变斜盘角度或改变原动机轴速度会改变流向液压执行器(线性或旋转)的流量,而液压执行器又用于控制负载的位置或速度。因为没有与节流有关的主要损失,所以功率损失得以最小化。在早期的EHA系统中,由于要求进出电动机的流量对称,致动器仅限于旋转系统。线性单杆执行器的最新设计变更已将EHA应用扩展到线性定位。此外,还显示了一种经过特殊设计的EHA线性执行器系统,能够将负载定位到200纳米。但是,跟踪所需输入路径的能力尚未得到广泛研究,因此,需要用于控制该高精度EHA系统的算法。因此,这是本研究的动机。本文对近十年来应用于HPCS的控制方法进行了全面综述。已经为液压传动系统开发了许多成功的控制算法,但是,某些问题,如滑杆摩擦,液压执行器,泵和阀的不确定性和非线性等,并未得到充分解决。本研究考虑了三种控制算法:(1)H2最优控制;(2)H∞PI加前馈控制;(3)鲁棒滑模控制。这三种算法的设计过程均基于离散时间系统模型。前两个算法基于系统的线性模型,而第三个算法在系统模型中应用了非线性执行器摩擦。这三种不同的控制算法是通过仿真和实验来开发和实现的。此外,还从位置跟踪和带宽性能两个方面对它们的控制性能进行了研究。对过去十年中应用于HPCS系统的控制方法进行了全面的综述。论文的主要目的是针对(1)阀控液压定位控制系统(HPCS)和(2)液压控制系统开发高性能的控制方案。具体的精确定位EHA系统并验证其位置跟踪性能; 2。这是第一次在HPCS系统上应用离散时间H 2最优控制算法。验证了离散时间H2最优控制在HPCS中的适用性。3。通过PI和前馈控制框架开发新的框架(SOF)。反馈和前馈增益是通过H∞优化技术而不是传统的调整方法明确解决的; 4。设计一种新颖的控制器,称为鲁棒滑模控制器(RSMC),其滑模表面的设计考虑了非线性摩擦模型中的参数不确定性。

著录项

  • 作者

    Lin, Yang.;

  • 作者单位

    The University of Saskatchewan (Canada).;

  • 授予单位 The University of Saskatchewan (Canada).;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 168 p.
  • 总页数 168
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:42:47

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号