首页> 外文学位 >Neural network control of a parallel hybrid-electric propulsion system for a small unmanned aerial vehicle.
【24h】

Neural network control of a parallel hybrid-electric propulsion system for a small unmanned aerial vehicle.

机译:用于小型无人机的并联混合动力推进系统的神经网络控制。

获取原文
获取原文并翻译 | 示例

摘要

Parallel hybrid-electric propulsion systems would be beneficial for small unmanned aerial vehicles (UAVs) used for military, homeland security, and disaster-monitoring missions. The benefits, due to the hybrid and electric-only modes, include increased time-on-station and greater range as compared to electric-powered UAVs and stealth modes not available with gasoline-powered UAVs. This dissertation contributes to the research fields of small unmanned aerial vehicles, hybrid-electric propulsion system control, and intelligent control. A conceptual design of a small UAV with a parallel hybrid-electric propulsion system is provided. The UAV is intended for intelligence, surveillance, and reconnaissance (ISR) missions. A conceptual design reveals the trade-offs that must be considered to take advantage of the hybrid-electric propulsion system. The resulting hybrid-electric propulsion system is a two-point design that includes an engine primarily sized for cruise speed and an electric motor and battery pack that are primarily sized for a slower endurance speed. The electric motor provides additional power for take-off, climbing, and acceleration and also serves as a generator during charge-sustaining operation or regeneration. The intelligent control of the hybrid-electric propulsion system is based on an instantaneous optimization algorithm that generates a hyper-plane from the nonlinear efficiency maps for the internal combustion engine, electric motor, and lithium-ion battery pack. The hyper-plane incorporates charge-depletion and charge-sustaining strategies. The optimization algorithm is flexible and allows the operator/user to assign relative importance between the use of gasoline, electricity, and recharging depending on the intended mission. A MATLAB/Simulink model was developed to test the control algorithms. The Cerebellar Model Arithmetic Computer (CMAC) associative memory neural network is applied to the control of the UAVs parallel hybrid-electric propulsion system. The CMAC neural network approximates the hyper-plane generated from the instantaneous optimization algorithm and produces torque commands for the internal combustion engine and electric motor. The CMAC neural network controller saves on the required memory as compared to a large look-up table by two orders of magnitude. The CMAC controller also prevents the need to compute a hyper-plane or complex logic every time step.
机译:并联混合动力推进系统对于用于军事,国土安全和灾害监测任务的小型无人机(UAV)将是有益的。与电动无人机相比,混合动力和纯电动模式的好处包括增加了工作时间和更大的航程,而汽油动力无人机则没有这种隐身模式。本论文为小型无人机,混合动力推进系统控制和智能控制的研究做出了贡献。提供了具有并联混合动力推进系统的小型无人机的概念设计。该无人机用于情报,监视和侦察(ISR)任务。概念设计揭示了在利用混合动力推进系统时必须考虑的权衡。最终的混合动力推进系统是一种两点式设计,包括一个主要针对巡航速度而定的发动机以及一个主要针对较慢的耐力速度而定的电动机和电池组。电动机为起飞,爬升和加速提供额外的动力,并且在电荷保持操作或再生期间还充当发电机。混合动力推进系统的智能控制基于瞬时优化算法,该算法根据非线性效率图为内燃机,电动机和锂离子电池组生成超平面。超平面结合了电荷耗尽和电荷维持策略。优化算法是灵活的,并允许操作员/用户根据预期任务在汽油,电力和充电之间分配相对重要性。开发了MATLAB / Simulink模型来测试控制算法。小脑模型算术计算机(CMAC)联想记忆神经网络被应用于无人机并联混合动力推进系统的控制。 CMAC神经网络近似于由瞬时优化算法生成的超平面,并为内燃机和电动机产生扭矩指令。与大型查询表相比,CMAC神经网络控制器节省了两个数量级的所需内存。 CMAC控制器还避免了每个时间步骤都需要计算超平面或复杂逻辑。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号