首页> 外文学位 >Spin and Tunneling Effects in Coupled Quantum Dot.
【24h】

Spin and Tunneling Effects in Coupled Quantum Dot.

机译:耦合量子点中的自旋和隧穿效应。

获取原文
获取原文并翻译 | 示例

摘要

The study and control of individual carrier spins in semiconductor heterostructures can be effected by interaction with light. Owing to their high degree of tunability, the spectroscopic properties of vertically coupled InAs quantum dots grown on GaAs substrate are great candidates for study as they have not been fully characterized. The central theme of this dissertation is therefore to collect spectroscopic information, with the ultimate aim of identification and characterization of the spin and charge properties of quantum dots to help lay the groundwork for future uses in optical devices and design of efficient and reliable qubit states for quantum computers.;The main results of this work include : (i) a detailed large sample size study of the electron and hole positions via dipole Stark shifts in various barrier sizes, leading to a model explaining how these positions are affected by quantum mechanical tunneling. This model successfully predicts the Stark shifts of previously unidentified exciton states; and (ii) the measurement of circular polarization memory properties of the various excitonic charge states that make up this system, which, in addition to aiding in the identification of the charge states in quantum dot molecules, reveal information about methods of mitigating the effects of the anisotropic exchange interaction, which is a potential spin decoherence mechanism. Finally, this work discusses in detail (iii) the design of a polarimetry setup to measure with a high degree of precision the Stokes parameters of the coupled quantum dot system, which elucidate the complete polarization state of the various charge states, with the ultimate goal of using this information to select the states that are best suited for quantum computation applications.
机译:半导体异质结构中单个载流子自旋的研究和控制可以通过与光相互作用来实现。由于其高度的可调谐性,在GaAs衬底上生长的垂直耦合InAs量子点的光谱性质非常适合研究,因为它们尚未得到充分表征。因此,本论文的中心主题是收集光谱信息,其最终目的是识别和表征量子点的自旋和电荷性质,以帮助奠定光学器件未来用途的基础,并设计出高效可靠的量子位态。量子计算机。这项工作的主要结果包括:(i)通过各种势垒尺寸的偶极斯达克位移对电子和空穴位置进行详细的大样本研究,从而建立了一个模型,解释了这些位置如何受到量子机械隧穿的影响。该模型成功地预测了先前未确定的激子态的斯塔克位移。 (ii)测量组成该系统的各种激子电荷态的圆极化记忆特性,这不仅有助于识别量子点分子中的电荷态,而且还揭示了有关减轻量子点效应的方法的信息。各向异性交换相互作用,这是一个潜在的自旋退相干机制。最后,这项工作详细讨论了(iii)极化测量装置的设计,以高精度测量耦合量子点系统的斯托克斯参数,从而阐明了各种电荷状态的完整极化状态,最终目标是使用此信息选择最适合量子计算应用程序的状态。

著录项

  • 作者

    Ramanathan, Swati.;

  • 作者单位

    Ohio University.;

  • 授予单位 Ohio University.;
  • 学科 Physics Condensed Matter.;Physics Optics.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 135 p.
  • 总页数 135
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号