首页> 外文学位 >Synthesis And Characterization of Copper Zinc Tin Sulfide Nanoparticles And Thin Films.
【24h】

Synthesis And Characterization of Copper Zinc Tin Sulfide Nanoparticles And Thin Films.

机译:硫化铜锌锡纳米颗粒和薄膜的合成与表征。

获取原文
获取原文并翻译 | 示例

摘要

Copper zinc tin sulfide (Cu2ZnSnS4, or CZTS) is emerging as an alternative material to the present thin film solar cell technologies such as Cu(In,Ga)Se2 and CdTe. All the elements in CZTS are abundant, environmentally benign, and inexpensive. In addition, CZTS has a band gap of ∼1.5 eV, the ideal value for converting the maximum amount of energy from the solar spectrum into electricity. CZTS has a high absorption coefficient (>104 cm-1 in the visible region of the electromagnetic spectrum) and only a few micron thick layer of CZTS can absorb all the photons with energies above its band gap. CZT(S,Se) solar cells have already reached power conversion efficiencies >10%.;One of the ways to improve upon the CZTS power conversion efficiency is by using CZTS quantum dots as the photoactive material, which can potentially achieve efficiencies greater than the present thin film technologies at a fraction of the cost. However, two requirements for quantum-dot solar cells have yet to be demonstrated. First, no report has shown quantum confinement in CZTS nanocrystals. Second, the syntheses to date have not provided a range of nanocrystal sizes, which is necessary not only for fundamental studies but also for multijunction photovoltaic architectures.;We resolved these two issues by demonstrating a simple synthesis of CZTS, Cu2SnS3, and alloyed (Cu2SnS3) x(ZnS)y nanocrystals with diameters ranging from 2 to 7 nm from diethyldithiocarbamate complexes. As-synthesized nanocrystals were characterized using high resolution transmission electron microscopy, X-ray diffraction, Raman spectroscopy, and energy dispersive spectroscopy to confirm their phase purity. Nanocrystals of diameter less than 5 nm were found to exhibit a shift in their optical absorption spectra towards higher energy consistent with quantum confinement and previous theoretical predictions.;Thin films from CZTS nanocrystals deposited on Mo-coated quartz substrates using drop casting were found to be continuous but highly porous. Annealing CZTS nanocrystal films at temperatures as low as 400 °C led to an intense grain growth; however, thin films from CZTS nanocrystals cracked on annealing due to their high porosity. Although quantum confinement in CZTS is only accessible in nanocrystals of diameters less than 5 nm, the high volume of the ligands as compared to the volume of the nanocrystals makes it a challenge to deposit continuous compacted thin films from small nanocrystals.;Films deposited from thermal decomposition of a stoichiometric mix of metal dithiocarbamate complexes were found to be predominantly CZTS. These films from complexes were found to be continuous but microporous. The diameter of the spheres making up the microporous structure could be changed by changing the anneal temperature. The structural composition of the final film could be altered by changing the heating rate of the complexes.;CZTS exists in three different crystal structures: kesterite, stannite, and pre-mixed Cu-Au (PMCA) structures. Due to the similarity in the crystal structures, it is extremely difficult to distinguish them based on X-ray diffraction. We computed the phonon dispersion curves for the three structures using ab-initio calculations, and found characteristic discontinuities at the Γ-point which can potentially be used to distinguish the three. In addition, the Γ-point phonon frequencies, which correspond to the Raman peak positions, for the three structures were found to be shifted from each other by a few wavenumbers. By deconvoluting the experimental Raman spectra for both CZTS and Cu2ZnSnSe4 (CZTSe) using Gaussian peaks, we observed that the most intense Raman scattering peak in both CZTS and CZTSe is a sum of two different peaks which correspond to scattering from their respective kesterite and stannite phases.;The electronic, structural, and vibrational properties of a series of CZTS-CZTSe alloys (CZTSSe) were studied using ab-initio calculations. The S-to-Se ratio and the spatial distribution of the anions in the unit cell were found to determine the energy splitting between the electronic states at the top of the valence band and the hole mobility in CZTSSe alloys and solar cells. X-ray diffraction patterns and phonon distribution curves were found to be sensitive to the local anion ordering. The predicted Raman scattering frequencies and their variation with x agree with experimentally determined values and trends.
机译:硫化铜锌锡(Cu2ZnSnS4或CZTS)正在作为目前的薄膜太阳能电池技术(例如Cu(In,Ga)Se2和CdTe)的替代材料出现。 CZTS中的所有元素都很丰富,环境友好且价格便宜。此外,CZTS的带隙约为1.5 eV,是将太阳光谱中最大能量转换为电能的理想值。 CZTS具有很高的吸收系数(在电磁波谱的可见光区域内> 104 cm-1),只有几微米厚的CZTS层可以吸收带隙以上能量的所有光子。 CZT(S,Se)太阳能电池的功率转换效率已达到> 10%。;提高CZTS功率转换效率的方法之一是使用CZTS量子点作为光敏材料,它有可能实现比CZTS量子点更高的效率。只需花费一小部分成本即可提供薄膜技术。然而,对于量子点太阳能电池的两个要求尚未得到证明。首先,没有报道显示在CZTS纳米晶体中有量子限制。第二,迄今为止的合成还没有提供一定范围的纳米晶体尺寸,这不仅对于基础研究而且对于多结光伏体系结构都是必需的。;我们通过演示CZTS,Cu2SnS3和合金化(Cu2SnS3来自二乙基二硫代氨基甲酸酯配合物的直径为2至7 nm的x(ZnS)y纳米晶体。使用高分辨率透射电子显微镜,X射线衍射,拉曼光谱和能量分散光谱对合成后的纳米晶体进行表征,以确认其相纯度。发现直径小于5 nm的纳米晶体在其光吸收光谱中向较高能量方向移动,这与量子限制和先前的理论预测相一致;发现使用滴铸法将CZTS纳米晶体的薄膜沉积在Mo涂层石英衬底上连续但高度多孔。在低至400°C的温度下对CZTS纳米晶体薄膜进行退火导致晶粒长大;然而,CZTS纳米晶体的薄膜由于其高孔隙率而在退火时破裂。尽管CZTS中的量子限制仅可在直径小于5 nm的纳米晶体中进行,但与纳米晶体的体积相比,配体的体积大,这使从小型纳米晶体沉积连续压实的薄膜成为一个挑战。发现金属二硫代氨基甲酸酯配合物的化学计量混合物的分解主要是CZTS。发现来自复合物的这些膜是连续的但微孔的。可以通过改变退火温度来改变构成微孔结构的球体的直径。可以通过改变配合物的加热速率来改变最终膜的结构组成。CZTS存在于三种不同的晶体结构中:钾钛矿,锡矿和预混合Cu-Au(PMCA)结构。由于晶体结构的相似性,基于X射线衍射很难区分它们。我们使用ab-initio计算来计算这三种结构的声子色散曲线,并发现了Γ点处的特征不连续点,可以用来区分这三种。另外,发现三个结构的对应于拉曼峰位置的Γ点声子频率彼此偏移了几个波数。通过使用高斯峰对CZTS和Cu2ZnSnSe4(CZTSe)的实验拉曼光谱进行反卷积,我们观察到CZTS和CZTSe中最强的拉曼散射峰是两个不同峰的总和,这两个峰对应于来自其各自的斑石和锡矿相的散射..使用从头算计算研究了一系列CZTS-CZTSe合金(CZTSSe)的电子,结构和振动性能。发现单元格中阴离子的S-Se比和空间分布决定了CZTSSe合金和太阳能电池中价带顶部电子态与空穴迁移率之间的能量分裂。发现X射线衍射图和声子分布曲线对局部阴离子有序。预测的拉曼散射频率及其随x的变化与实验确定的值和趋势一致。

著录项

  • 作者

    Khare, Ankur.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Engineering Chemical.;Nanotechnology.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 162 p.
  • 总页数 162
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号