首页> 外文学位 >Ultrafast imaging: Laser induced electron diffraction.
【24h】

Ultrafast imaging: Laser induced electron diffraction.

机译:超快成像:激光诱导的电子衍射。

获取原文
获取原文并翻译 | 示例

摘要

Imaging of molecules has always occupied an essential role in physical, chemical and biological sciences. X-ray and electron diffraction methods routinely achieve sub-Å spatial resolutions but are limited to probing dynamical timescales longer than a picosecond. With the advent of femtosecond intense lasers, a new imaging paradigm emerges in last decade based on laser-induced electron diffraction (LIED). It has been placed on a firm foundation by the quantitative rescattering theory, which established that large-angle e-ion elastic differential cross sections (DCS) can be retrieved from the LIED spectrum. We further demonstrate that atomic potentials can be accurately retrieved from those extracted DCSs at energies from a few to several tens of electron volts. Extending to molecules, we show mid-infrared (mid-IR) lasers are crucial to generate high-energy electron wavepackets (>100 eV) to resolve the atomic positions in a molecule. These laser-driven 100 eV electrons can incur core-penetrating collisions where the momentum transfer is comparable to those attained in conventional keV electron diffraction. Thus a simple independent atom model (IAM), which has been widely used in conventional electron diffractions, may apply for LIED. We theoretically examine and validate the applicability of IAM for electron energies above 100 eV using e-molecule large-angle collision data obtained in conventional experiments, demonstrating its resolving powers for bond lengths about 0.05 Å. The Validity of IAM is also checked by an experimental LIED investigation of rare gas atoms in the mid-IR regime. We show that the electron's high energy promotes core-penetrating collisions at large scattering angles, where the e-atom interaction is dominated by the strong short range atomic-like potential. Finally, we analyze the measured LIED spectrum of N2 and O2 at three mid-IR wavelengths (1.7, 2.0, and 2.3 μm). As expected, the retrieved bond lengths of N2 at three wavelengths are about same as the equilibrium N 2 bond length. For O2, the data is also consistent with a bond length contraction of 0.1 Å within 4-6 fs after tunnel ionization. This investigation establishes a foundation for this novel imaging method for spatiotemporal imaging of gas-phase molecules at the atomic scale.
机译:分子成像在物理,化学和生物科学中一直占据着至关重要的作用。 X射线和电子衍射方法通常可以达到亚Å的空间分辨率,但仅限于探测比皮秒长的动态时标。随着飞秒强激光的出现,近十年来基于激光诱导的电子衍射(LIED)出现了新的成像范例。它通过定量散射理论奠定了坚实的基础,该理论确立了可以从LIED光谱中检索大角度e离子弹性微分截面(DCS)。我们进一步证明,在几到几十电子伏特的能量下,可以从那些提取的DCS中准确地检索出原子势。扩展到分子,我们显示中红外(mid-IR)激光对于产生高能电子波包(> 100 eV)来解析分子中的原子位置至关重要。这些由激光驱动的100 eV电子可以引起穿透核的碰撞,其动量传递与常规keV电子衍射中的动量传递相当。因此,已在常规电子衍射中广泛使用的简单独立原子模型(IAM)可以应用于LIED。我们使用常规实验中获得的电子分子大角度碰撞数据,从理论上检验并验证了IAM在100 eV以上电子能量的适用性,证明了其对键长约0.05Å的分辨能力。 IAM的有效性还通过对中红外方案中稀有气体原子进行的LIED实验研究进行了检验。我们表明,电子的高能量在大散射角处促进了穿透核的碰撞,其中电子原子相互作用主要由短距离的类原子强电势主导。最后,我们分析了在三个中红外波长(1.7、2.0和2.3μm)下测得的N2和O2的LIED光谱。如所期望的,在两个波长处检索到的N 2的键长与平衡的N 2键长大致相同。对于O2,该数据还与隧道电离后4-6 fs内键长收缩0.1Å一致。这项研究为这种新颖的成像方法奠定了基础,该成像方法用于在原子尺度上对气相分子进行时空成像。

著录项

  • 作者

    Xu, Junliang.;

  • 作者单位

    Kansas State University.;

  • 授予单位 Kansas State University.;
  • 学科 Physics General.;Physics Optics.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 123 p.
  • 总页数 123
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号