首页> 外文学位 >Investigations on interfacial dynamics with ultrafast electron diffraction.
【24h】

Investigations on interfacial dynamics with ultrafast electron diffraction.

机译:超快电子衍射的界面动力学研究。

获取原文
获取原文并翻译 | 示例

摘要

An ultrafast electron diffractive voltammetry (UEDV) technique is introduced, extended from ultrafast electron diffraction, to investigate the ultrafast charge transport dynamics at interfaces and in nanostructures. Rooted in Coulomb-induced refraction, formalisms are presented to quantitatively deduce the transient surface voltages (TSVs), caused by photoinduced charge redistributions at interfaces, and are applied to examine a prototypical Si/SiO2 interface, known to be susceptible to photoinduced interfacial charging The ultrafast time resolution and high sensitivity to surface charges of this electron diffractive approach allows direct elucidation of the transient effects of photoinduced hot electron transport at nanometer (∼2 nm) interfaces. Two distinctive regimes are uncovered, characterized by the time scales associated with charge separation. At the low fluence regime, the charge transfer is described by a thermally-mediated process with linear dependence on the excitation fluence. Theoretical analysis of the transient thermal properties of the carriers show that it is well-described by a direct tunneling of the laser heated electrons through the dielectric oxide layer to surface states. At higher fluences, a coherent multiphoton absorption process is invoked to directly inject electrons into the conduction band of SiO2, leading to a more efficient surface charge accumulation. A quadratic fluence dependence on this coherent, 3-photon lead electron injection is characterized by the rapid dephasing of the intermediately generated hot electrons from 2-photon absorption, limiting the yield of the consecutive 1-photon absorption by free carriers.;The TSV formalism is extended beyond the simple slab geometry associated with planar surfaces (Si/SiO2), to interfaces with arbitrary geometrical features, by imposing a corrective scheme to the slab model. The validity of this treatment is demonstrated in an investigation of the charge transfer dynamics at a metal nanoparticle/self-assembled monolayer (SAM)/semiconductor interconnected structure, allowing for the elucidation of the photo-initiated charging processes (forward and backward) through the SAM, by monitoring the deflection of the associated Bragg peaks in conjunction with the UEDV extended formalism to interpret the surface voltage.;The design, calibration, and implementation of a molecular beam doser (MBD), capable of layer-by-layer coverage is also presented, with preliminary investigations on interfacial ice.;With the development of UEDV and implementation of the MBD, continued investigations of charge transfer in more complex interfaces can be explored, such as those pertinent to novel solar-cell device technology, as their quantum efficiencies are usually strongly dependent on an interfacial charge transfer process. As UEDV is inherently capable of probing charge and atomic motion simultaneously, systems that exhibit phenomena that are attributable to strong coupling of the atomic and electronic degrees of freedom are of particular interest for future investigations with UEDV, such as optically induced electronic phase transitions and colossal field switching in functional oxides.
机译:在超快电子衍射的基础上,引入了超快电子衍射伏安法(UEDV),以研究界面和纳米结构中的超快电荷传输动力学。根源于库仑诱导的折射,形式主义被提出以定量推导由界面处的光致电荷再分布引起的瞬态表面电压(TSV),并被用于检查原型Si / SiO2界面,该界面容易受到光致界面电荷的影响。这种电子衍射方法具有超快的时间分辨率和对表面电荷的高度敏感性,可以直接阐明在纳米(〜2 nm)界面上光致热电子传输的瞬态效应。揭示了两种不同的机制,其特征在于与电荷分离相关的时间尺度。在低注量状态下,电荷转移通过热介导的过程来描述,与激发注量呈线性关系。对载流子的瞬态热特性的理论分析表明,它是通过激光加热的电子通过介电氧化物层直接隧穿到表面态而很好地描述的。在更高的注量下,将调用相干多光子吸收过程,将电子直接注入SiO2的导带中,从而导致更有效的表面电荷积累。这种相干的3光子铅电子注入具有二次积分通量,其特征是中间产生的热电子从2光子吸收中快速移相,限制了自由载流子连续吸收1光子的产量。通过对平板模型施加校正方案,扩展到与平面(Si / SiO2)相关的简单平板几何形状,扩展到具有任意几何特征的界面。通过研究金属纳米粒子/自组装单层(SAM)/半导体互连结构上的电荷转移动力学,可以阐明光引发的充电过程(向前和向后),从而证明了这种处理方法的有效性。 SAM通过与UEDV扩展形式相结合来监视相关的布拉格峰的偏转来解释表面电压;能够逐层覆盖的分子束剂量器(MBD)的设计,校准和实现是随着UEDV的发展和MBD的实施,可以探索对更复杂的界面中电荷转移的持续研究,例如与新型太阳能电池设备技术有关的量子。效率通常强烈取决于界面电荷转移过程。由于UEDV本身具有同时探测电荷和原子运动的能力,因此表现出归因于原子和电子自由度强耦合的现象的系统对于UEDV的未来研究尤为重要,例如光感应电子相变和巨大功能性氧化物的场转换。

著录项

  • 作者

    Murdick, Ryan A.;

  • 作者单位

    Michigan State University.;

  • 授予单位 Michigan State University.;
  • 学科 Physics Condensed Matter.;Physics Optics.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 232 p.
  • 总页数 232
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号